
Compiler Design

Syntax Directed
Translation

LECTURE-20

Topics Covered

• Syntax-directed translation
• Inherited attributes
• Annotated Parse Tree
• Dependency Graph

3

4

Phases of a Compiler

•1. Lexical Analyzer (Scanner)
• Takes source Program and Converts

into tokens
•2. Syntax Analyzer (Parser)
•Takes tokens and constructs a parse

tree.
•3. Semantic Analyzer
•Takes a parse tree and constructs an

abstract syntax tree with attributes.

5

Phases of a Compiler-
Contd

•4.
Takes an abstract syntax tree and

produces an Interpreter code
(Translation output)

•5. Intermediate-code Generator
•Takes an abstract syntax tree and

produces un- optimized
Intermediate code.

Syntax Directed TranslationSyntax Directed Translation

6

Motivation: Parser as
Translator

Syntax-directed
translation

ParserParser

Syntax + translation rules
(often hardcoded in the parser)

Stream of
tokens

ASTs, byte code
assembly code,
etc

7

Important
• Syntax directed translation: attaching actions

to the grammar rules (productions).
• The actions are executed during the

compilation (not during the generation of the
compiler, not during run time of the program!).
Either when replacing a nonterminal with its
rhs (LL, top-down)
or a handle with a nonterminal (LR, bottom-
up).

• The compiler-compiler generates a parser
which knows how to parse the program
(LR,LL). The actions are “implanted” in the
parser and are executed according to the
parsing mechanism.

8

Example :Expressions

• E  E + T
• E  T
• T  T * F
• T  F
• F  (E)
• F  num

9

Synthesized Attributes
• The attribute value of the terminal at

the left hand side of a grammar rule
depends on the values of the attributes
on the right hand side.

• Typical for LR (bottom up) parsing.
• Example: TT*F

{$$.val=$1.val$3.val}.
T.val

T.val F.val

10

Example :Expressions In
LEX
• E  E + T

{$$.val:=$1.val+$3.val;}
• E  T {$$.val:=$1.val;}
• T  T * F {$$.val:=$1.val*$3.val;}
• T  F {$$.val:=$1.val;}
• F  (E) {$$.val:=$2.val;}
• F  num {$1.val:=$1.val;}

11

Example 2:Type
definitions

• D  T L
• T  int
• T  real
• L  id , L
• L  id

12

Inherited attributes

• The value of the attributes of one of the
symbols to the right of the grammar rule
depends on the attributes of the other
symbols (left or right).

• Typical for LL parsing (top down).
• D  T {$2.type:=$1.type} L
• L  id , {$3.type:=$1.type} L

D.type

,id

L.type

L.typeT.type L.type

13

Type definitions

• D  T {$2.type:=$1.type} L
• T  int {$$.type:=int;}
• T  real {$$:=real;}
• L  id , L {gen(id.name,$$.type);
• $3.type:=$$.type;}
• L  id {gen(id.name,$$.type); }

T.type

int

14

Type definitions: LL(1)

• D  T {$2.type:=$1.type} L
• T  int {$$.type:=int;}
• T  real {$$:=real;}
• L  id {gen(id.name,$$.type);
• $2.type:=$$.type;} R
• R  , id {gen(id.name,$$.type); }
• R  

T.type

int

15

How to arrange things for
LL(1) on stack?

• Include on the stack, except for
the grammar symbol also the
actions, and a shadow copy for
each nonterminal.

• Each time one sees an action on
the stack, execute it.

• Shadow copies are used to get
synthesized values and pass them
further to the right of the rule.

LR parser

LR(k)
parser

action goto

a + b $

• Given the current
state on top and
current token, consult
the action table.

• Either, shift, i.e.,
read a new token, put
in stack, and push
new state, or

• or Reduce, i.e.,
remove some
elements from stack,
and given the newly
exposed top of stack
and current token, to
be put on top of stack,
consult the goto table
about new state on
top of stack.

s0

sn-1

sn

X0

Xn-1

17

LR parser adapted.

LR(k)
parser

action goto

a + b $ Same as before, plus:

•Whenever reduce
step, execute the
action associated with
grammar rule.
If left-to right
inherited attributes
exist, can also
execute actions in
middle of rule.

•Can put record of
attributes, associated
with a grammar
symbol, on stack.

s0

sn-1

sn

X0

Xn-1

Attributes

18

LL parser

LL(k)
parser

$

Z

X

Y

Parsing table

a + b $ •If top symbol X a
terminal, must match
current token m.

•If not, pop top of
stack. Then look at
table T[X, m] and
push grammar rule
there in reverse order.

$ 2+3*4$ num.type:=2

$num +3*4$ Fnum F.type:=2

$F +3*4$ TF T.type:=2
$T +3*4$ ET E.type:=2
$E +3*4$ shift
$E+ 3*4$ shift num.type:=3

$E+num *4$ Fnum F.type:=3
$E+F *4$ TF F.type:=3
$E+T *4$ shift
$E+T* 4$ shift num.type:=4

$E+T*num $ Fnum F.type:=4
$E+T*F $ TT*F T.type:=12
$E+T $ EE*T E.type:=14

LL parser
Adapted

LL(k)
parser

$

Z

X

Y

Parsing table

a + b $

•If top symbol X a
terminal, must match
current token m.

•Put actions into stack
as part of rules. Hold
for each nonterminal
a record with
attributes.

•If nonterminal,
replace top of stack
with shadow copy.
Then look at table
T[X, m] and push
grammar rule there in
reverse order.

•If shadow copy,
remove. This way
nonterminal can
deliver values down
and up.

Attributes

Actions

On stack to be
read

rule action

$D int a,b$
$(D)L{}T int a,b$ DT{}L
$(D)L{}(T)in
t{}

int a,b$ Tint{}

$(D)L{}(
T)

a,b$ T.type:=int

$(D)L a,b$ L.type:=i
nt

$(D)(L)R{}
id

a,b$ Lid{}R

$(D)(L)R ,b$ Gen(a,int),
R.type:=int

$(D)(L)(R){}
id,

,b$ R, id

22

Expressions in LL:
Eliminating left recursion

• E  E + T
• E  T
• T  T * F
• T  F
• F  (E)
• F  num

• E  T E’
• E’  + T E’
• E’  
• T  F T’
• T’  * F T’
• T’  
• F  (E)
• F  num

3

(2+3)*4
E

E

E’

E’

E’

T’

T’

T’

T

T

F

F

F







2

4

+

*()

T

F T’



• E  T E’
• E’  + T E’
• E’  
• T  F T’
• T’  * F T’
• T’  
• F  (E)
• F  num

24

Actions in LL

• E  T {$2.down:=$1.up;}
E’ {$$.up:=$2.up;}

• E’  + T
{$3.down:=$$.down+$2.up;}

E’ {$$.up:=$3.up;}
• E’   {$$.up:=$$.down;}
• T  F {$2.down:=$1.up;}

T’ {$$.up:=$2.up;}
• T’  * F

{$3.down:=$$.down+$2.up;}
T’ {$$.up:=$3.down;}

• T’   {$$.up:=$$.down;}
• F  (E) {$$.up:=$2.up;}
• F  num {$$.up:=$1.up;}

E

E

E’

E’

E’

T’

T’

T’

T

T

F

F

F







2

4

+

*()

T

F T’

3

25

Syntax Directed Translation
Scheme

• A syntax directed translation scheme
is a syntax directed definition in which
the net effect of semantic actions is to
print out a translation of the input to a
desired output form.

• This is accomplished by including “emit”
statements in semantic actions that
write out text fragments of the output,
as well as string-valued attributes that
compute text fragments to be fed into
emit statements.

26

Syntax-Directed
Translation
1. Values of these attributes are evaluated by the semantic

rules associated with the production rules.
2. Evaluation of these semantic rules:

– may generate intermediate codes
– may put information into the symbol table
– may perform type checking
– may issue error messages
– may perform some other activities
– in fact, they may perform almost any activities.

3. An attribute may hold almost any thing.
– a string, a number, a memory location, a complex record.

4. Grammar symbols are associated with attributes to
associate information with the programming language
constructs that they represent.

27

Syntax-Directed Definitions
and Translation Schemes

1. When we associate semantic rules with
productions, we use two notations:
– Syntax-Directed Definitions
– Translation Schemes

28

Schemes

A. Syntax-Directed Definitions:
– give high-level specifications for translations
– hide many implementation details such as order of

evaluation of semantic actions.
– We associate a production rule with a set of

semantic actions, and we do not say when they will
be evaluated.

B. Translation Schemes:
– indicate the order of evaluation of semantic actions

associated with a production rule.
– In other words, translation schemes give a little bit

information about implementation details.

29

Syntax-Directed Definitions
1. A syntax-directed definition is a generalization of a context-free

grammar in which:
– Each grammar symbol is associated with a set of attributes.
– This set of attributes for a grammar symbol is partitioned into two

subsets called
• synthesized and
• inherited attributes of that grammar symbol.

– Each production rule is associated with a set of semantic rules.

2. Semantic rules set up dependencies between attributes which can be
represented by a dependency graph.

3. This dependency graph determines the evaluation order of these
semantic rules.

4. Evaluation of a semantic rule defines the value of an attribute. But a
semantic rule may also have some side effects such as printing a
value.

30

Annotated Parse Tree
1. A parse tree showing the values of

attributes at each node is called an
annotated parse tree.

2. The process of computing the attributes
values at the nodes is called annotating
(or decorating) of the parse tree.

3. Of course, the order of these computations
depends on the dependency graph
induced by the semantic rules.

31

Syntax-Directed
Definition

In a syntax-directed definition, each production A→α is
associated with a set of semantic rules of the form:

b=f(c1,c2,…,cn)
where f is a function and b can be one of the followings:

 b is a synthesized attribute of A and c1,c2,…,cn are
attributes of the grammar symbols in the production
(A→α).

OR
 b is an inherited attribute one of the grammar
symbols in α (on the right side of the production), and
c1,c2,…,cn are attributes of the grammar symbols in the
production (A→α).

32

Attribute Grammar

• So, a semantic rule b=f(c1,c2,…,cn) indicates
that the attribute b depends on attributes
c1,c2,…,cn.

• In a syntax-directed definition, a semantic
rule may just evaluate a value of an
attribute or it may have some side effects
such as printing values.

• An attribute grammar is a syntax-directed
definition in which the functions in the
semantic rules cannot have side effects (they
can only evaluate values of attributes).

33

Syntax-Directed Definition --
Example

Production Semantic Rules
L → E return print(E.val)
E → E1 + T E.val = E1.val + T.val
E → T E.val = T.val
T → T1 * F T.val = T1.val * F.val
T → F T.val = F.val
F → (E) F.val = E.val
F → digit F.val = digit.lexval

1. Symbols E, T, and F are associated with a synthesized
attribute val.

2. The token digit has a synthesized attribute lexval (it is
assumed that it is evaluated by the lexical analyzer).

34

Annotated Parse Tree --
Example
Input: 5+3*4 L

E.val=17 return

E.val=5 + T.val=12

T.val=5 T.val=3 * F.val=4

F.val=5 F.val=3 digit.lexval=4

digit.lexval=5 digit.lexval=3

35

Dependency Graph
Input: 5+3*4 L

E.val=17

E.val=5 T.val=12

T.val=5 T.val=3 F.val=4

F.val=5 F.val=3 digit.lexval=4

digit.lexval=5 digit.lexval=3

36

Syntax-Directed Definition –
Example2
Production Semantic Rules
E → E1 + T E.loc=newtemp(), E.code = E1.code || T.code ||

add E1.loc,T.loc,E.loc
E → T E.loc = T.loc, E.code=T.code
T → T1 * F T.loc=newtemp(), T.code = T1.code || F.code

|| mult T1.loc,F.loc,T.loc
T → F T.loc = F.loc, T.code=F.code
F → (E) F.loc = E.loc, F.code=E.code
F → id F.loc = id.name, F.code=“”

1. Symbols E, T, and F are associated with synthesized
attributes loc and code.

2. The token id has a synthesized attribute name (it is assumed
that it is evaluated by the lexical analyzer).

3. It is assumed that || is the string concatenation operator.

37

Syntax-Directed Definition –
Inherited Attributes

Production Semantic Rules
D → T L L.in = T.type
T → int T.type = integer
T → real T.type = real
L → L1 id L1.in = L.in,
addtype(id.entry,L.in)
L → id addtype(id.entry,L.in)

1. Symbol T is associated with a synthesized attribute
type.

2. Symbol L is associated with an inherited attribute in.

38

A Dependency Graph –
Inherited Attributes
Input: real p q

D L.in=real

T L T.type=real L1.in=real addtype(q,real)

real L id addtype(p,real)
id.entry=q

id id.entry=p

parse tree dependency graph

39

Syntax Trees
1. Decoupling Translation from Parsing-Trees.
2. Syntax-Tree: an intermediate representation of the

compiler’s input.
3. Example Procedures:

mknode, mkleaf
4. Employment of the synthesized attribute nptr (pointer)

PRODUCTION SEMANTIC RULE
E  E1 + T E.nptr =

mknode(“+”,E1.nptr ,T.nptr)
E  E1 - T E.nptr = mknode(“-”,E1.nptr ,T.nptr)
E  T E.nptr = T.nptr
T  (E) T.nptr = E.nptr
T  id T.nptr = mkleaf(id, id.lexval)
T  num T.nptr = mkleaf(num, num.val)

40

Draw the Syntax Tree

a-4+c

id num 4

id

to entry for a

to entry for c

41

Directed Acyclic Graphs for
Expressions

a + a * (b – c) + (b – c) * d

+

+ *

*
-a

b c

d

–Example an S-attributed definition:
• A syntax directed definition that uses

synthesized attributes exclusively is said
to be an S-attributed definition.

Production semantic rules
L ->E n print(E.val)
E->E1 + T E.val = E1.val + T.val
E->T E.val = T.val
T->T1 * F T.val = T1.val * F.val
T->F T.val = F.val
F->(E) F.val = E.val
F->digits F.val = digits.lexval

3*5+4n

–L-attributed definitions:
• A syntax directed definition is L-attributed if each

inherited attribute of Xj, 1<=j<=n, on the right
side of A->X1X2…Xn depends only on

– attributes of the symbols X1, X2, …, Xj-1.
– the inherited attributes of A.

• L stands for Left since information appears to flow
from left to right in the compilation process.

• Example:
A->LM {L.i=A.i; M.i=L.s; A.s = M.s}
A->QR {R.i = A.i; Q.i = R.s; A.s = Q.s}

– Relation between S-attributed definitions
and L-attributed definitions?

– Why L-attributed definitions are important?

