Compiler Design

Lecture-7/

Introduction to Syntax analysis

Topics Covered

e Syntax analysis
* CFG

~Syntactic Analysis

Syntactic analysis, or parsing, IS

the second phase of complilation:
The token file Is converted to an

abstract syntax tree.

Compiler Passes

Analysis Synthesis
of input program of output program
(front-end) (back-end)

Intermediate
Lexical Analysis Code Generation

L]

Syntactic Analysis Optimization

Semantic Analysis Code Generation

Syntactic Analysis / Parsing

o Goal: Convert token stream to abstract
syntax tree

o Abstract syntax tree (AST):
o Captures the structural features of the program
> Primary data structure for remainder of
compilation
» Three Part Plan

- Study how context-free grammars specify
syntax

- Study algorithms for parsing / building ASTs
- Study the miniJava Implementation

Context-free Grammars

- Compromise between

* Res, can’t nest or specify recursive structure
» General grammars, too powerful, undecidable

- Context-free grammars are a sweet spot

« Powerful enough to describe nesting, recursion

« Easy to parse; but also allow restrictions for speed
- Not perfect

« Cannot capture semantics, as in, “variable must be
declared,” requiring later semantic pass

« Can be ambiguous

- EBNF, Extended Backus Naur Form, is popular
notation

CFG Terminology

- Terminals -- alphabet of language defined
by CFG

- Nonterminals -- symbols defined in terms
of terminals and nonterminals

- Productions -- rules for how a nonterminal
(Ihs) is defined in terms of a (possibly
empty) sequence of terminals and
nonterminals

* Recursion Is allowed!

- Multiple productions allowed for a
nonterminal, alternatives

o Sta%ie symbol -- root of the defining

DI= Stmt
lan ur;% .= 1f (Expr) then Stmt else Stmt

Stmt -:= while (Expr) do Stmt

EBNF Syntax of initial

MiniJava
Program : .= MainClassDecl { ClassDecl }
MainClassDecl = class ID {

public static void main

(String [] ID) { { Stmt } }}
ClassDecl .= class ID [extends ID] {

{ ClassVarDecl } { MethodDecl }

+
ClassVarDecl ::= Type ID ;
MethodDecl = public Type ID

([Formal { , Formal }])
{ { Stmt } return Expr ; }
Formal 2= Type ID
Type 2= Int |boolean | ID

Initial miniJava [continued]}

Stmt :-:= Type ID ;
| { {Stmt} }
| 1f (Expr) Stmt else Stmt
| while (Expr) Stmt
| System.out.printin (Expr) ;
| ID = Expr ;
Expr ::= Expr Op EXpr
| ' Expr
| Expr . IDC[Expr { , Expr }])
| ID | this
| Integer | true | false
| (Expr)
Op =+ 1-1*17/
| <l<=1>1>]=1]1=] &

RE Specification of initial
MiniJava Lex

Program ::= (Token | Whitespace)*

Token -:= ID | Integer | ReservedWord | Operator |
Delimiter

ID ::= Letter (Letter | Digit)*

Letter ::=a | --- | z | A | | Z

Digit ::=0 | ... | 9

Integer :-:= Digit*

ReservedWord::= class | public | static | extends |

void | int | boolean | 1f | else |
while]return|true|false| this | new | String
| main | System.out.printin

Operator =+ | - | * | /7| <] <=]>1]>]| ==

=] && | !
Delimiter -:= ; | . | ,

I=1CIO 1411011

Derivations and Parse Trees

Derivation: a sequence of expansion
steps, beginning with a start symbol
and leading to a sequence of
terminals

Parsing: inverse of derivation

> Glven a sequence of terminals (a\k\a
tokens) want to recover the nonterminals
representing structure

Can represent derivation as a parse
tree, that Is, the concrete syntax tree

Example Grammar

E ::=EopE|-E|] (E)] id
op ::=+]1-1>*17

