Compiler Design

Lecture-10

State transition and Shift-Reduce
Conflicts

- Topics Covered

State Transitions
Building Table of States & Transitions
Shift/Reduce Conflicts

State Transitions

Given set of items, compute new state(s) for each
symbol (terminal and non-terminal) after dot

o gstate transitions correspond to shift actions

New item derived from old item by shifting dot over
symbol

> do closure to compute new state Initial state (1):

S ::= .S $S t:= . beep S ::= { L}
o State (2) reached on transition that shifts S:
S” ::=S . %

o State (3) reached on transition that shifts beep:
S ::= beep .
> State (4) reached on transition that shifts {g - -

={ - L}
L ::= . S
L ::= . L ;S
S = . beep
S = . {L}

Accepting Transitions

If state has S~ . $item,

then add transition labeled$ to the accept
action

Example:
S” ::=S . $
has transition labeled $ to accept action

Reducing States

If state has lhs :-:= rhs . item, then it has
a reduce Ihs ::= rhs action

Example:
S -:= beep .
has reduce S :©:= beep action

No label; this state always reduces this
production

- what if other items in this state shift, or accept?

o what If other items in this state reduce
differently?

Rest of the States, Part 1

State (4): if shift beep, goto State (3)
State (4): iIf shift {, goto State (4)
State (4): if shift S, goto State (5)
State (4): if shift L, goto State (6)
State (5):

L ::= S .
State (6):

S::={L .}

L ::= L . ; S
State (6): If shift }, goto State (7)

State (6): If shift ;, goto State (8)

Rest of the States (Part 2)

State (7):

S ::={ L} .
State (8):

L :z=L ; . S

S ::= . beep

S::=_.4{L}
State (8): if shift beep, goto State (3)
State (8): if shift {, goto State (4)
State (8): if shift S, goto State (9)
State (9):

L ::=L ; S . (Whew)

LR(0) State Diagram

S’::=S $
S ::=beep | { L }
L ::=S] L ;S L-->L;S.
: s
S --> .S$ beep‘f S --> beep. @Fﬁ L-->L;.S
S --> (L} [beep S --> .{L}
S-->.beep |l 4S->{L} S -->beep
L-->.S i
L-->.L;S 1S-->{L}
S { S --> {L} L-->L.:S
S --> .beep)
S >S$ > '
5 L.>S S -->{L}.

Building Table of States &
Transitions

Create a row for each state

Create a column for each terminal, non-terminal,
and $

For every "state (i): if shift X goto state (j)"
transition:

o if X Is a terminal, put "shift, goto j" action in row I,
column X

o if X Is a non-terminal, put "goto j" action in row |,
column X

For every "state (i): if $ accept" transition:
* put "accept” action in row i, column $
For every "state (i): Ihs -:= rhs." action:

e put"reduce lhs ::= rhs"action in all columns
of row |

Table of This Grammar

State| { | } | beep S| L|S$
1 |s.g4 s,03 g2
2 al
3 reduce S ::= beep
4 |s,04 S,03 g5 | g6
5 reduce L -:= S
6 S,g7 S,08
7 reduce S := { L }
8 |s.04 s,03 g9
9 reduce L ::= L ; S

al

g6

g2
g5
g9

~
~

PR BAH AR H

beep
{L}

=S

AN A A A A A A A [t 't Tonten)

1o 0090000

S,08

beep
s,03
s,03
reduce L
s,03

reduce S ::
reduce S ::

¥
s,g7

s,g4
s, g4
s,g4

St
7

= beep | { L}

=S $

Example

S,

PODOODDD
DODOD DD
000080008
e
oo
R,
R
o0
—
™ N~
o ~
Do © ©
O
ou) 1
gttt < <92

Bwwowowwvo © Voo
oNJIJJdJ1 4 dJd11 B
ITITIIIIIAIAITISISY 7 8
Q
©

A ()
Addd A A A A — AAdddd

Problems In Shift-Reduce

Parsing
Can write grammars that cannot be
handled with shift-reduce parsing

Shift/reduce conflict:

e state has both shift action(s) and reduce
actions

Reduce/reduce conflict:
e State has more than one reduce action

Shift/Reduce Conflicts

LR(0) example:
E ::=E+T | T
State:e ::= e . + T
E ::=T .
o Can shift +
o CanreduceE :-:=T

LR(k) example:

S ::= 1f E then S |
iIT E then Selse S| ...
State: s ::= if E then S .
S ::= 1T E then S . else S

o Can shift else
o CanreduceS ::= 1f E then S

Avoiding Shift-Reduce

Conflicts

Can rewrite grammar to remove conflict
- E.g. Matched Stmt vs. Unmatched
Stmt
Can resolve In favor of shift action

> try to find longest r.h.s. before reducing

works well in practice
yacc, jflex, et al. do this

Reduce/Reduce Conflicts

Example:
Stmt -:= Type 1d ; | LHS = Expr ; | --.
LHS t:= 1d | LHS [Expr] | ---
Type -:=1d | Type [1]| ---
State: type ::= id .
LHS ::= 1d .
Can reduce Type ::= id
Can reduce rs ::= id

Avoid Reduce/Reduce

Conflicts
Can rewrite grammar to remove conflict

- can be hard
e.g. C/C++ declaration vs. expression problem

e.g. MiniJava array declaration vs. array store
problem

Can resolve In favor of one of the
reduce actions

> but which?

> yacc, jflex, et al. Pick reduce action for
production listed textually first in
specification

