

• NP-Completeness

• Travelling salesman problem

• P and NP

• So far we’ve seen a lot of good news!

• Such-and-such a problem can be solved quickly (i.e., in close to

linear time, or at least a time that is some small polynomial

function of the input size)

• NP-completeness is a form of bad news!

• Evidence that many important problems can not be solved quickly.

• NP-complete problems really come up all the time!

3

• Knowing that they are hard lets you stop beating your

head against a wall trying to solve them…

• Use a heuristic: come up with a method for solving a reasonable

fraction of the common cases.

• Solve approximately: come up with a solution that you can prove

that is close to right.

• Use an exponential time solution: if you really have to solve the

problem exactly and stop worrying about finding a better solution.

4

• Decision problems

• Given an input and a question regarding a problem, determine if

the answer is yes or no

• Optimization problems

• Find a solution with the “best” value

• Optimization problems can be cast as decision problems

that are easier to study

• E.g.: Shortest path: G = unweighted directed graph

• Find a path between u and v that uses the fewest

edges

• Does a path exist from u to v consisting of at most k edges?

5

• The algorithmic complexity of a computation is some

measure of how difficult is to perform the computation

(i.e., specific to an algorithm)

• The complexity of a computational problem or task is

the complexity of the algorithm with the lowest order of

growth of complexity for solving that problem or

performing that task.

• e.g. the problem of searching an ordered list has at most lgn time

complexity.

• Computational Complexity: deals with classifying

problems by how hard they are.

6

• Class P consists of (decision) problems that are solvable

in polynomial time

• Polynomial-time algorithms

• Worst-case running time is O(nk), for some constant k

• Examples of polynomial time:

• O(n2), O(n3), O(1), O(n lg n)

• Examples of non-polynomial time:

• O(2n), O(nn), O(n!)

7

• Problems in P are also called tractable

• Problems not in P are intractable or unsolvable

• Can be solved in reasonable time only for small inputs

• Or, can not be solved at all

• Are non-polynomial algorithms always worst than

polynomial algorithms?

 - n1,000,000 is technically tractable, but really impossible - nlog log log n is

technically intractable, but easy

8

• Turing discovered in the 1930’s that there are problems

unsolvable by any algorithm.

• The most famous of them is the halting problem

• Given an arbitrary algorithm and its input, will that algorithm

eventually halt, or will it continue forever in an “infinite loop?”

9

10

• Can be classified in various categories based on their

degree of difficulty, e.g.,

• NP

• NP-complete

• NP-hard

• Let’s define NP algorithms and NP problems …

11

Nondeterministic algorithm = two stage procedure:

1) Nondeterministic (“guessing”) stage:

 generate randomly an arbitrary string that can be thought of as a

candidate solution (“certificate”)

2) Deterministic (“verification”) stage:

 take the certificate and the instance to the problem and returns

YES if the certificate represents a solution

NP algorithms (Nondeterministic polynomial)

 verification stage is polynomial

12

• Class NP consists of problems that could be solved by

NP algorithms

• i.e., verifiable in polynomial time

• If we were given a “certificate” of a solution, we could

verify that the certificate is correct in time polynomial to

the size of the input

• Warning: NP does not mean “non-polynomial”

13

• Given: a directed graph G = (V, E), determine a simple

cycle that contains each vertex in V

• Each vertex can only be visited once

• Certificate:

• Sequence: v1, v2, v3, …, v|V|

14

hamiltonian

not

hamiltonian

• Any problem in P is also in NP:

 P  NP

• The big (and open question) is whether NP  P or P =

NP

• i.e., if it is always easy to check a solution, should it also be easy

to find a solution?

• Most computer scientists believe that this is false but we

do not have a proof …

15

P

NP

• NP-complete problems are

 defined as the hardest

 problems in NP

• Most practical problems turn out to be either P or NP-

complete.

• Study NP-complete problems …

16

P

NP

NP-complete

• Reduction is a way of saying that one problem is “easier”

than another.

• We say that problem A is easier than problem B,

(i.e., we write “A  B”)

 if we can solve A using the algorithm that solves B.

• Idea: transform the inputs of A to inputs of B

17

f Problem B
  yes

no

yes

no

Problem A

• Given two problems A, B, we say that A is polynomially

reducible to B (A p B) if:

1. There exists a function f that converts the input of A to inputs of

B in polynomial time

2. A(i) = YES  B(f(i)) = YES

18

• A problem B is NP-complete if:

 (1) B  NP

 (2) A p B for all A  NP

• If B satisfies only property (2) we say that B is NP-hard

• No polynomial time algorithm has been discovered for an NP-

Complete problem

• No one has ever proven that no polynomial time algorithm can

exist for any NP-Complete problem

19

P

NP

NP-complete

 - If A p B and B  P, then A  P

 - if A p B and A  P, then B  P

20

f Problem B
  yes

no

yes

no

Problem A

1. Use a polynomial time reduction algorithm to

 transform A into B

2. Run a known polynomial time algorithm for B

3. Use the answer for B as the answer for A

21

Polynomial time algorithm to decide A

f Polynomial time

algorithm to decide B

  yes

no

yes

no

• Prove that the problem B is in NP

• A randomly generated string can be checked in polynomial time to

determine if it represents a solution

• Show that one known NP-Complete problem can be

transformed to B in polynomial time

• No need to check that all NP-Complete problems are reducible to

B

23

Theorem: If any NP-Complete problem can be solved in

polynomial time  then P = NP.

24

P

NP

NP-complete

• Shortest simple path

• Given a graph G = (V, E) find a shortest path from a source to all

other vertices

• Polynomial solution: O(VE)

• Longest simple path

• Given a graph G = (V, E) find a longest path from a source to all

other vertices

• NP-complete

25

• Euler tour

• G = (V, E) a connected, directed graph find a cycle that traverses

each edge of G exactly once (may visit a vertex multiple times)

• Polynomial solution O(E)

• Hamiltonian cycle

• G = (V, E) a connected, directed graph find a cycle that visits each

vertex of G exactly once

• NP-complete

26

• Satisfiability problem: given a logical expression , find

an assignment of values (F, T) to variables xi that

causes  to evaluate to T

  =x1   x2  x3   x4

• SAT was the first problem shown to be NP-complete!

27

• CFN is a special case of SAT

•  is in “Conjuctive Normal Form” (CNF)

• “AND” of expressions (i.e., clauses)

• Each clause contains only “OR”s of the variables and their

complements

 E.g.:  = (x1  x2)  (x1   x2)  ( x1   x2)

28

clauses

 A subcase of CNF problem:

• Contains three clauses

• E.g.:

  = (x1  x1  x2)  (x3  x2  x4) 

 (x1  x3   x4)

• 3-CNF is NP-Complete

• Interestingly enough, 2-CNF is in P!

29

 Clique Problem:

• Undirected graph G = (V, E)

• Clique: a subset of vertices in V all connected to each other by

edges in E (i.e., forming a complete graph)

• Size of a clique: number of vertices it contains

 Optimization problem:

• Find a clique of maximum size

 Decision problem:

• Does G have a clique of size k?

30

Clique(G, 2) = YES

Clique(G, 3) = NO

Clique(G, 3) = YES

Clique(G, 4) = NO

• Given: an undirected graph G = (V, E)

• Problem: Does G have a clique of size k?

• Certificate:

• A set of k nodes

• Verifier:

• Verify that for all pairs of vertices in this set there exists an edge in

E

31

• Idea:

• Construct a graph G such that  is satisfiable only if G has a

clique of size k

32

• NP-complete - means problems that are 'complete' in

NP, i.e. the most difficult to solve in NP

• NP-hard - stands for 'at least' as hard as NP (but not

necessarily in NP);

• NP-easy - stands for 'at most' as hard as NP (but not

necessarily in NP);

• NP-equivalent - means equally difficult as NP, (but not

necessarily in NP);

33

34

NP-complete

NP-hard

