


 

• NP-Completeness 

• Travelling salesman problem 

• P and NP 

 



• So far we’ve seen a lot of good news! 

• Such-and-such a problem can be solved quickly (i.e., in close to 

linear time, or at least a time that is some small polynomial 

function of the input size) 

• NP-completeness is a form of bad news! 

• Evidence that many important problems can not be solved quickly. 

• NP-complete problems really come up all the time! 
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• Knowing that they are hard lets you stop beating your 

head against a wall trying to solve them… 

• Use a heuristic: come up with a method for solving a reasonable 

fraction of the common cases. 

• Solve approximately: come up with a solution that you can prove 

that is close to right. 

• Use an exponential time solution: if you really have to solve the 

problem exactly and stop worrying about finding a better solution. 
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• Decision problems 

• Given an input and a question regarding a problem, determine if 

the answer is yes or no 

• Optimization problems 

• Find a solution with the “best” value 

• Optimization problems can be cast as decision problems 

that are easier to study 

• E.g.: Shortest path: G = unweighted directed graph 

• Find a path between u and v that uses the fewest 

edges 

• Does a path exist from u to v consisting of at most k edges? 
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• The algorithmic complexity of a computation is some 

measure of how difficult is to perform the computation 

(i.e., specific to an algorithm) 

• The complexity of a computational problem or task is 

the complexity of the algorithm with the lowest order of 

growth of complexity for solving that problem or 

performing that task. 

• e.g. the problem of searching an ordered list has at most lgn time 

complexity.   

• Computational Complexity: deals with classifying 

problems by how hard they are. 
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• Class P consists of (decision) problems that are solvable 

in polynomial time 

• Polynomial-time algorithms 

• Worst-case running time is O(nk), for some constant k 

• Examples of polynomial time:  

• O(n2), O(n3), O(1), O(n lg n)  

• Examples of non-polynomial time:  

• O(2n), O(nn), O(n!) 
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• Problems in P are also called tractable 

• Problems not in P are intractable or unsolvable 

• Can be solved in reasonable time only for small inputs 

• Or, can not be solved at all  

• Are non-polynomial algorithms always worst than 

polynomial algorithms? 

 - n1,000,000 is technically tractable, but really impossible   - nlog log log n is 

technically intractable, but easy 
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• Turing discovered in the 1930’s that there are problems 

unsolvable by any algorithm. 

• The most famous of them is the halting problem 

•  Given an arbitrary algorithm and its input, will that algorithm 

eventually halt, or will it continue forever in an “infinite loop?” 
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• Can be classified in various categories based on their 

degree of difficulty, e.g., 

• NP 

• NP-complete 

• NP-hard 

• Let’s define NP algorithms and NP problems … 
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Nondeterministic algorithm = two stage procedure: 

1) Nondeterministic (“guessing”) stage:  

 generate randomly an arbitrary string that can be thought of as a 

candidate solution (“certificate”) 

2) Deterministic (“verification”) stage: 

 take the certificate and the instance to the problem and returns 

YES if the certificate represents a solution 

NP algorithms (Nondeterministic polynomial) 

 verification stage is polynomial 
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• Class NP consists of problems that could be solved by 

NP algorithms  

• i.e., verifiable in polynomial time 

• If we were given a “certificate” of a solution, we could 

verify that the certificate is correct in time polynomial to 

the size of the input 

• Warning: NP does not mean “non-polynomial” 
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• Given: a directed graph G = (V, E), determine a simple 

cycle that contains each vertex in V 

• Each vertex can only be visited once 

• Certificate: 

• Sequence: v1, v2, v3, …, v|V| 
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• Any problem in P is also in NP:  

    P  NP 

• The big (and open question) is whether NP  P or P = 

NP 

• i.e., if it is always easy to check a solution, should it also be easy 

to find a solution? 

• Most computer scientists believe that this is false but we 

do not have a proof … 
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• NP-complete problems are   

   defined as the hardest  

   problems in NP 

• Most practical problems turn out to be either P or NP-

complete. 

• Study NP-complete problems … 
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• Reduction is a way of saying that one problem is “easier” 

than another. 

• We say that problem A is easier than problem B,               

(i.e., we write “A  B”)  

   if we can solve A using the algorithm that solves B. 

• Idea: transform the inputs of A to inputs of B 
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f Problem B 
  yes 

no 

yes 

no 

Problem A 



• Given two problems A, B, we say that A is polynomially 

reducible to B (A p B) if: 

1. There exists a function f  that converts the input of A to inputs of 

B in polynomial time 

2. A(i) = YES  B(f(i)) = YES 
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• A problem B is NP-complete if: 

  (1) B  NP 

  (2) A p B for all A  NP 

• If B satisfies only property (2) we say that B is NP-hard 

• No polynomial time algorithm has been discovered for an NP-

Complete problem 

• No one has ever proven that no polynomial time algorithm can 

exist for any NP-Complete problem 
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     - If A p B and B  P, then A  P 

     - if A p B and A  P, then B  P 
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1. Use a polynomial time reduction algorithm to  

      transform A into B 

2. Run a known polynomial time algorithm for B 

3. Use the answer for B as the answer for A 
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Polynomial time algorithm to decide A 

f Polynomial time  

algorithm to decide B 

  yes 

no 

yes 

no 



• Prove that the problem B is in NP 

• A randomly generated string can be checked in polynomial time to 

determine if it represents a solution 

• Show that one known NP-Complete problem can be 

transformed to B in polynomial time 

• No need to check that all NP-Complete problems are reducible to 

B 
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Theorem: If any NP-Complete problem can be solved in 

polynomial time  then P = NP. 
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• Shortest simple path 

• Given a graph G = (V, E) find a shortest path from a source to all 

other vertices 

• Polynomial solution: O(VE) 

• Longest simple path 

• Given a graph G = (V, E) find a longest path from a source to all 

other vertices 

• NP-complete 
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• Euler tour 

• G = (V, E) a connected, directed graph find a cycle that traverses 

each edge of G exactly once (may visit a vertex multiple times)  

• Polynomial solution O(E) 

• Hamiltonian cycle 

• G = (V, E) a connected, directed graph find a cycle that visits each 

vertex of G exactly once 

• NP-complete 
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• Satisfiability problem: given a logical expression , find 

an assignment of values       (F, T) to variables xi that 

causes  to evaluate    to T 

   =x1   x2  x3   x4 

 

• SAT was the first problem shown to be NP-complete! 
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• CFN is a special case of SAT  

•  is in “Conjuctive Normal Form” (CNF)  

• “AND” of expressions (i.e., clauses) 

• Each clause contains only “OR”s of the variables and their 

complements 

 

     E.g.:  = (x1  x2)  (x1   x2)  ( x1   x2) 
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 A subcase of CNF problem: 

• Contains three clauses 

• E.g.:  

   = (x1  x1  x2)  (x3  x2  x4)      

  (x1  x3   x4) 

 

• 3-CNF is NP-Complete 

 

• Interestingly enough, 2-CNF is in P! 
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 Clique Problem: 

• Undirected graph G = (V, E) 

• Clique: a subset of vertices in V all connected to each other by 

edges in E (i.e., forming a complete graph) 

• Size of a clique: number of vertices it contains 

 Optimization problem: 

• Find a clique of maximum size 

 Decision problem: 

• Does G have a clique of size k? 
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Clique(G, 2) = YES 

Clique(G, 3) = NO 

Clique(G, 3) = YES 

Clique(G, 4) = NO 



• Given: an undirected graph G = (V, E) 

• Problem: Does G have a clique of size k? 

• Certificate: 

• A set of k nodes 

• Verifier: 

• Verify that for all pairs of vertices in this set there exists an edge in 

E  
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• Idea: 

• Construct a graph G such that  is satisfiable only if G has a 

clique of size k 
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• NP-complete - means problems that are 'complete' in 

NP, i.e. the most difficult to solve in NP  

• NP-hard - stands for 'at least' as hard as NP (but not 

necessarily in NP);  

• NP-easy - stands for 'at most' as hard as NP (but not 

necessarily in NP);  

• NP-equivalent - means equally difficult as NP, (but not 

necessarily in NP);  
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