

Topics to be covered

Optimal Binary Search Trees

* Given sequence K = k; <k, <--- <k, of n sorted keys,
with a search probability p; for each key k.

» Want to build a binary search tree (BST)
» Actual cost = # of items examined.

* For key k;, cost = depth.(ki)+1, where depth.(k;) = depth
of kiin BST T .

Comp 122, Spring 2004

Ex ected Search Cost

searchcostinT]

= Z (depth; (k;)+1)- p;

= ZdepthT (ki)' P + Z P;
i=1 i=1

=1+ Zdeth (ki) b,
=)

Comp 122, Spring 2004

probabilities is 1.

Example

« Consider 5 keys with these search probabilities:
Py 0:29. P2 = Q.o aepi s = 0 Ps = 0-3

i 0.25
200 0
3 2 0.1
Ky K, 4 1 Wi
5 2 0.6
1.15

Comp 122, Spring 2004

B0 p. = 0.3

OSt] = 2.10.

otimal for this set of keys.

Comp 122, Spring 2004

Example

* Optimal BST have smallest height.
* Optimal BST have highest-probability key at root.

 Build by exhaustive checking?

* Construct each n-node BST.

* For each,
assign keys and compute expected search cost.

- But there are Q(4"/n%2) different BSTs with n nodes.

Comp 122, Spring 2004

Optimal Substructure

* Any subtree of a BST contains keys in a
contiguous range k;, ..., ki forsome 1 <i<j=n.

* If T Is an optimal BST and
T contains subtree T' with keys k;, ... k;
x then T' must be an optimal BST for keys Ki,

|
. Cut and paste.

Comp 122, Spring 2004

Optimal Substructure

* One of the keys in k;, ...k, say whereisr<],
of an optimal subtree fogthese

Keys.
- Left subtree of k. contains k,...,k._;.

* Right subtree of k, contains k,+1, .
k.

kr-l kr+1 kj

- Examine all candidate roots k, , fori sr <
- Determine all optimal BSTs containing k;,...,k. ; and containing

j Comp 122, Spring 2004

Recursive Solution

* Find optimal BST for k;,....k, where 121, <n,J=i-1.
When | = 11, the tree is empty.

* Define

* Ifj=1-1, thenefi,] =0.

. Ifj2i,
« Selectarootk, forsomei<r<j.
* Recursively make an optimal BSTs

e for k,...k as the left subtree, and
 for k ,..,k as the right subtree.

Comp 122, Spring 2004

Recursive Solution

 When the OPT subtree becomes a subtree of a node:
* Depth of every node in OPT subtree goes up by 1.
» Expected search cost increases by

- If k. Is the root of an optimal BST for k;,..,k; :

TN

= el, r-1] + e[r+1, J] + w(l,]).(oecause w(i, jy=w(i,r 1) +p, +w(r + 1, j)
- But, we don’t know k.. Hence,

G if j=i—1
e, J]:{min{e[i,r—1]+e[r +1, j1+w(,)} ifi<

iI<r<j

Comp 122, Spring 2004

N’

Computing an Optimal Solution

For each subproblem (i,)), store:
« expected search cost in a table
* Will use only entries €]i, j |, where | = i-1.

: = root of subtree with keys k;,..,k;, for 1 <i
<j<n.

- = sum of probabillities
*W[I,1-1]=0for1<i<n.
Wi, JJ=w[i,]-1] + p;for1 =i<]<n.

Comp 122, Spring 2004

O(n3®)

Comp 122, Spring 2004

Elements of Dynamic Programming

Comp 122, Spring 2004

Optimal Substructure

« Show that a solution to a problem consists of making
a choice, which leaves one or more subproblems to
solve.

« Suppose that you are given this last choice that
leads to an optimal solution.

* Glven this choice, determine which subproblems
arise and how to characterize the resulting space of
subproblems.

« Show that the solutions to the subproblems used
within the optimal solution must themselves be
optimal. Usually use cut-and-paste.

* Need to ensure that a wide enough range of choices
and subproblems are.gensidered.

Optimal Substructure

» Optimal substructure varies across problem
domains:

1. are used in an optimal solution.
. 2. In determining which subproblem(s) to
use.

* Informally, running time depends on (# of
subproblems overall) x (# of choices).

 How many subproblems and choices do the
examples considered contain?

- Dynamic programming uses optimal substructure

« First find optimal solutions to subproblems.

* Then choose which toctgmsD o) E)Ztt;(;pal solution to the
nmhlpm

Optimal Substucture

* Does optimal substructure apply to all
optimization problems?

* Applies to determining the shortest path but
the longest simple path of an unweighted
directed graph.

* Why?

« Solution to one subproblem does not affect solution to
another subproblem of the same problem.

 Solution to one subproblem affects the solutions to other
subproblems. Comp 122, Spring 2004

e -Lvarnmnlio-:

Overlapping Subproblems

* The space of subproblems must be “small”.
* The

» Arecursive algorithm is exponential because it solves
the same problems repeatedly.

* If divide-and-conquer Is applicable, then each problem
solved will be brand new.

Comp 122, Spring 2004

