


 

• Recurrences 



• Equation or an inequality that characterizes a 
function by its values on smaller inputs. 

• Solution Methods 
• Substitution Method. 

• Recursion-tree Method. 

• Master Method. 

• Recurrence relations arise when we analyze 
the running time of iterative or recursive 
algorithms. 
• Ex: Divide and Conquer. 

T(n) = (1)    if n   c 

T(n) = a T(n/b) + D(n) + C(n)  otherwise 



• Guess the form of the solution, then  

use mathematical induction to show it 

correct. 

• Substitute guessed answer for the function when 

the inductive hypothesis is applied to smaller values 

– hence, the name. 

• Works well when the solution is easy to 

guess. 

• No general way to guess the correct solution. 



Recurrence:  T(n) = 1                         if   n = 1 

                      T(n) = 2T(n/2) + n         if   n > 1 

Guess:  T(n) = n lg n + n. 

Induction:  

•Basis: n = 1  n lgn + n = 1 = T(n). 

•Hypothesis: T(k) = k lg k + k for all k < n. 

•Inductive Step: T(n)  = 2 T(n/2) + n 

                                       = 2 ((n/2)lg(n/2) + (n/2)) + n 

                                       = n (lg(n/2)) + 2n 

                                       = n lg n – n + 2n 

                                       = n lg n + n 



• Making a good guess is sometimes difficult with the 

substitution method. 

• Use recursion trees to devise good guesses. 

• Recursion Trees 

• Show successive expansions of recurrences using trees. 

• Keep track of the time spent on the subproblems of a divide and 

conquer algorithm. 

• Help organize the algebraic bookkeeping necessary to solve a 

recurrence. 

 

 



• Running time of Merge Sort: 

T(n) = (1)    if n = 1 

T(n) = 2T(n/2) + (n)  if n > 1 

• Rewrite the recurrence as 

T(n) = c    if n = 1 

T(n) = 2T(n/2) + cn    if n > 1 

c > 0:  Running time for the base case and 

     time per array element for the divide and 

     combine steps. 

 



For the original problem, 

we have a cost of cn, 

plus two subproblems 

each of size (n/2) and 

running time T(n/2). 

cn 

T(n/2) T(n/2) 

Each of the size n/2 problems 

has a cost of cn/2 plus two 

subproblems, each costing 

T(n/4). 
cn 

cn/2 cn/2 

T(n/4) T(n/4) T(n/4) T(n/4) 

Cost of divide and 

merge.  

Cost of sorting 

subproblems.  



Continue expanding until the problem size reduces to 1. 

cn 

cn/2 cn/2 

cn/4 cn/4 cn/4 cn/4 

c c c c c c 

lg n 

cn 

cn 

cn 

cn 

Total           : cnlgn+cn 



Continue expanding until the problem size reduces to 1. 
cn 

cn/2 cn/2 

cn/4 cn/4 cn/4 cn/4 

c c c c c c 

•Each level has total cost cn. 

•Each time we go down one level, 

the number of subproblems doubles, 

but the cost per subproblem halves  

 cost per level remains the same. 

•There are lg n + 1 levels, height is 

lg n. (Assuming n is a power of 2.) 

•Can be proved by induction. 

•Total cost = sum of costs at each 

level = (lg n + 1)cn = cnlgn + cn = 

(n lgn). 

 



• Use the recursion-tree method to determine a guess for 

the recurrences 

• T(n) = 3T(n/4) + (n2). 

• T(n) = T(n/3) + T(2n/3) + O(n). 



• Recursion trees only generate guesses. 

• Verify guesses using substitution method. 

• A small amount of “sloppiness” can be tolerated. Why? 

• If careful when drawing out a recursion tree and summing 

the costs, can be used as direct proof. 

 



• Based on the Master theorem. 

• “Cookbook” approach for solving recurrences of the form 

    T(n) = aT(n/b) + f(n) 

• a  1, b > 1 are constants. 

• f(n) is asymptotically positive. 

• n/b may not be an integer, but we ignore floors and ceilings. 

Why? 

• Requires memorization of three cases. 



Theorem 4.1 

Let a  1 and b > 1 be constants, let f(n) be a function, and  

Let T(n) be defined on nonnegative integers by the recurrence  

T(n) = aT(n/b) + f(n), where we can replace n/b by n/b or 

n/b.  

T(n) can be bounded asymptotically in three cases: 

1. If  f(n) = O(nlogba–)  for some constant  > 0, then T(n) = 

(nlogba). 

2. If  f(n) = (nlogba), then T(n) = (nlogbalg n). 

3. If  f(n) = (nlogba+)  for some constant  > 0,  

 and if, for some constant c < 1 and all sufficiently large n,  

 we have a·f(n/b)  c f(n), then T(n) = (f(n)). 



EXAMPLE 1: QUICK SORT 

T(n)= 2T(n/2) + O(n) 

T(1)= O(1) 

• In the above case the presence of function of T on both 
sides of the equation signifies the presence of recurrence 
relation 

• (SUBSTITUTION MEATHOD used) The equations are 
simplified to produce the final result: 

                             ……cntd 



 T(n) = 2T(n/2) + O(n) 

         = 2(2(n/22) + (n/2)) + n 

         = 22 T(n/22) + n + n 

         = 22 (T(n/23)+ (n/22)) + n + n 

         = 23 T(n/23) + n + n + n 

         = n log n  

Cntd…. 



EXAMPLE 2: BINARY SEARCH 

T(n)=O(1) + T(n/2) 

T(1)=1 

Above is another example of recurrence relation and the way to solve it 

is by Substitution. 

T(n)=T(n/2) +1 

      = T(n/22)+1+1 

      = T(n/23)+1+1+1 

      = logn 

T(n)= O(logn) 

 

 


