

• Recurrences

• Equation or an inequality that characterizes a
function by its values on smaller inputs.

• Solution Methods
• Substitution Method.

• Recursion-tree Method.

• Master Method.

• Recurrence relations arise when we analyze
the running time of iterative or recursive
algorithms.
• Ex: Divide and Conquer.

T(n) = (1) if n  c

T(n) = a T(n/b) + D(n) + C(n) otherwise

• Guess the form of the solution, then

use mathematical induction to show it

correct.

• Substitute guessed answer for the function when

the inductive hypothesis is applied to smaller values

– hence, the name.

• Works well when the solution is easy to

guess.

• No general way to guess the correct solution.

Recurrence: T(n) = 1 if n = 1

 T(n) = 2T(n/2) + n if n > 1

Guess: T(n) = n lg n + n.

Induction:

•Basis: n = 1  n lgn + n = 1 = T(n).

•Hypothesis: T(k) = k lg k + k for all k < n.

•Inductive Step: T(n) = 2 T(n/2) + n

 = 2 ((n/2)lg(n/2) + (n/2)) + n

 = n (lg(n/2)) + 2n

 = n lg n – n + 2n

 = n lg n + n

• Making a good guess is sometimes difficult with the

substitution method.

• Use recursion trees to devise good guesses.

• Recursion Trees

• Show successive expansions of recurrences using trees.

• Keep track of the time spent on the subproblems of a divide and

conquer algorithm.

• Help organize the algebraic bookkeeping necessary to solve a

recurrence.

• Running time of Merge Sort:

T(n) = (1) if n = 1

T(n) = 2T(n/2) + (n) if n > 1

• Rewrite the recurrence as

T(n) = c if n = 1

T(n) = 2T(n/2) + cn if n > 1

c > 0: Running time for the base case and

 time per array element for the divide and

 combine steps.

For the original problem,

we have a cost of cn,

plus two subproblems

each of size (n/2) and

running time T(n/2).

cn

T(n/2) T(n/2)

Each of the size n/2 problems

has a cost of cn/2 plus two

subproblems, each costing

T(n/4).
cn

cn/2 cn/2

T(n/4) T(n/4) T(n/4) T(n/4)

Cost of divide and

merge.

Cost of sorting

subproblems.

Continue expanding until the problem size reduces to 1.

cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c c c c

lg n

cn

cn

cn

cn

Total : cnlgn+cn

Continue expanding until the problem size reduces to 1.
cn

cn/2 cn/2

cn/4 cn/4 cn/4 cn/4

c c c c c c

•Each level has total cost cn.

•Each time we go down one level,

the number of subproblems doubles,

but the cost per subproblem halves

 cost per level remains the same.

•There are lg n + 1 levels, height is

lg n. (Assuming n is a power of 2.)

•Can be proved by induction.

•Total cost = sum of costs at each

level = (lg n + 1)cn = cnlgn + cn =

(n lgn).

• Use the recursion-tree method to determine a guess for

the recurrences

• T(n) = 3T(n/4) + (n2).

• T(n) = T(n/3) + T(2n/3) + O(n).

• Recursion trees only generate guesses.

• Verify guesses using substitution method.

• A small amount of “sloppiness” can be tolerated. Why?

• If careful when drawing out a recursion tree and summing

the costs, can be used as direct proof.

• Based on the Master theorem.

• “Cookbook” approach for solving recurrences of the form

 T(n) = aT(n/b) + f(n)

• a  1, b > 1 are constants.

• f(n) is asymptotically positive.

• n/b may not be an integer, but we ignore floors and ceilings.

Why?

• Requires memorization of three cases.

Theorem 4.1

Let a  1 and b > 1 be constants, let f(n) be a function, and

Let T(n) be defined on nonnegative integers by the recurrence

T(n) = aT(n/b) + f(n), where we can replace n/b by n/b or

n/b.

T(n) can be bounded asymptotically in three cases:

1. If f(n) = O(nlogba–) for some constant  > 0, then T(n) =

(nlogba).

2. If f(n) = (nlogba), then T(n) = (nlogbalg n).

3. If f(n) = (nlogba+) for some constant  > 0,

 and if, for some constant c < 1 and all sufficiently large n,

 we have a·f(n/b)  c f(n), then T(n) = (f(n)).

EXAMPLE 1: QUICK SORT

T(n)= 2T(n/2) + O(n)

T(1)= O(1)

• In the above case the presence of function of T on both
sides of the equation signifies the presence of recurrence
relation

• (SUBSTITUTION MEATHOD used) The equations are
simplified to produce the final result:

 ……cntd

 T(n) = 2T(n/2) + O(n)

 = 2(2(n/22) + (n/2)) + n

 = 22 T(n/22) + n + n

 = 22 (T(n/23)+ (n/22)) + n + n

 = 23 T(n/23) + n + n + n

 = n log n

Cntd….

EXAMPLE 2: BINARY SEARCH

T(n)=O(1) + T(n/2)

T(1)=1

Above is another example of recurrence relation and the way to solve it

is by Substitution.

T(n)=T(n/2) +1

 = T(n/22)+1+1

 = T(n/23)+1+1+1

 = logn

T(n)= O(logn)

