

• Algorithms

• What is an Algorithm?

• Characteristics

• Complexity

•What is an algorithm?

•An algorithm is a finite set of precise instructions for
performing a computation or for solving a problem.

•This is a rather vague definition. You will get to know
a more precise and mathematically useful definition
when you attend CS420.

•But this one is good enough for now…

Fall 2002 CMSC 203 - Discrete Structures 3

• Properties of algorithms:

• Input from a specified set,

• Output from a specified set (solution),

• Definiteness of every step in the computation,

• Correctness of output for every possible input,

• Finiteness of the number of calculation steps,

• Effectiveness of each calculation step and

• Generality for a class of problems.

Fall 2002 CMSC 203 - Discrete Structures 4

•We will use a pseudocode to specify algorithms,

which slightly reminds us of Basic and Pascal.

•Example: an algorithm that finds the maximum

element in a finite sequence

•procedure max(a1, a2, …, an: integers)

•max := a1

•for i := 2 to n

• if max < ai then max := ai

•{max is the largest element}

Fall 2002 CMSC 203 - Discrete Structures 5

•Another example: a linear search algorithm, that is,
an algorithm that linearly searches a sequence for a
particular element.

•procedure linear_search(x: integer; a1, a2, …, an:
 integers)
•i := 1
•while (i  n and x  ai)
• i := i + 1
•if i  n then location := i
•else location := 0
•{location is the subscript of the term that equals x, or
is zero if x is not found}

Fall 2002 CMSC 203 - Discrete Structures 6

•If the terms in a sequence are ordered, a binary

search algorithm is more efficient than linear search.

•The binary search algorithm iteratively restricts the

relevant search interval until it closes in on the

position of the element to be located.

Fall 2002 CMSC 203 - Discrete Structures 7

Fall 2002 CMSC 203 - Discrete Structures 8

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

Fall 2002 CMSC 203 - Discrete Structures 9

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

Fall 2002 CMSC 203 - Discrete Structures 10

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

Fall 2002 CMSC 203 - Discrete Structures 11

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

Fall 2002 CMSC 203 - Discrete Structures 12

a c d f g h j l m o p r s u v x z

binary search for the letter ‘j’

center element

search interval

found !

•procedure binary_search(x: integer; a1, a2, …, an:
 integers)
•i := 1 {i is left endpoint of search interval}
•j := n {j is right endpoint of search interval}
•while (i < j)
•begin
• m := (i + j)/2
• if x > am then i := m + 1
• else j := m
•end
•if x = ai then location := i
•else location := 0
•{location is the subscript of the term that equals x, or
is zero if x is not found}

Fall 2002 CMSC 203 - Discrete Structures 13

•In general, we are not so much interested in the

time and space complexity for small inputs.

•For example, while the difference in time

complexity between linear and binary search is

meaningless for a sequence with n = 10, it is

gigantic for n = 230.

Fall 2002 CMSC 203 - Discrete Structures 14

•For example, let us assume two algorithms A and B

that solve the same class of problems.

•The time complexity of A is 5,000n, the one for B is

1.1n for an input with n elements.

•For n = 10, A requires 50,000 steps, but B only 3,

so B seems to be superior to A.

•For n = 1000, however, A requires 5,000,000 steps,

while B requires 2.51041 steps.

Fall 2002 CMSC 203 - Discrete Structures 15

•This means that algorithm B cannot be used for

large inputs, while algorithm A is still feasible.

•So what is important is the growth of the

complexity functions.

•The growth of time and space complexity with

increasing input size n is a suitable measure for the

comparison of algorithms.

Fall 2002 CMSC 203 - Discrete Structures 16

• Comparison: time complexity of algorithms A and B

Fall 2002 CMSC 203 - Discrete Structures 17

Algorithm A Algorithm B Input Size

n

10

100

1,000

1,000,000

5,000n

50,000

500,000

5,000,000

5109

1.1n

3

2.51041

13,781

4.81041392

•This means that algorithm B cannot be used for

large inputs, while running algorithm A is still

feasible.

•So what is important is the growth of the

complexity functions.

•The growth of time and space complexity with

increasing input size n is a suitable measure for the

comparison of algorithms.

Fall 2002 CMSC 203 - Discrete Structures 18

•The growth of functions is usually described using

the big-O notation.

•Definition: Let f and g be functions from the

integers or the real numbers to the real numbers.

•We say that f(x) is O(g(x)) if there are constants C

and k such that

•|f(x)|  C|g(x)|

•whenever x > k.

Fall 2002 CMSC 203 - Discrete Structures 19

•When we analyze the growth of complexity

functions, f(x) and g(x) are always positive.

•Therefore, we can simplify the big-O requirement to

•f(x)  Cg(x) whenever x > k.

•If we want to show that f(x) is O(g(x)), we only need

to find one pair (C, k) (which is never unique).

Fall 2002 CMSC 203 - Discrete Structures 20

•The idea behind the big-O notation is to establish an

upper boundary for the growth of a function f(x) for

large x.

•This boundary is specified by a function g(x) that is

usually much simpler than f(x).

•We accept the constant C in the requirement

•f(x)  Cg(x) whenever x > k,

•because C does not grow with x.

•We are only interested in large x, so it is OK if

f(x) > Cg(x) for x  k.

Fall 2002 CMSC 203 - Discrete Structures 21

•Example:

•Show that f(x) = x2 + 2x + 1 is O(x2).

•For x > 1 we have:

•x2 + 2x + 1  x2 + 2x2 + x2

• x2 + 2x + 1  4x2

•Therefore, for C = 4 and k = 1:

•f(x)  Cx2 whenever x > k.

• f(x) is O(x2).

Fall 2002 CMSC 203 - Discrete Structures 22

•Question: If f(x) is O(x2), is it also O(x3)?

•Yes. x3 grows faster than x2, so x3 grows also faster

than f(x).

•Therefore, we always have to find the smallest

simple function g(x) for which f(x) is O(g(x)).

Fall 2002 CMSC 203 - Discrete Structures 23

•“Popular” functions g(n) are
•n log n, 1, 2n, n2, n!, n, n3, log n

•Listed from slowest to fastest growth:

• 1
• log n
• n
• n log n
• n2

• n3

• 2n

• n!

Fall 2002 CMSC 203 - Discrete Structures 24

•A problem that can be solved with polynomial worst-

case complexity is called tractable.

•Problems of higher complexity are called

intractable.

•Problems that no algorithm can solve are called

unsolvable.

•You will find out more about this in CS420.

Fall 2002 CMSC 203 - Discrete Structures 25

•For any polynomial f(x) = anx
n + an-1x

n-1 + … + a0,
where a0, a1, …, an are real numbers,
•f(x) is O(xn).

•If f1(x) is O(g1(x)) and f2(x) is O(g2(x)), then

(f1 + f2)(x) is O(max(g1(x), g2(x)))

•If f1(x) is O(g(x)) and f2(x) is O(g(x)), then

(f1 + f2)(x) is O(g(x)).

•If f1(x) is O(g1(x)) and f2(x) is O(g2(x)), then

(f1f2)(x) is O(g1(x) g2(x)).

Fall 2002 CMSC 203 - Discrete Structures 26

•What does the following algorithm compute?

•procedure who_knows(a1, a2, …, an: integers)
•m := 0
•for i := 1 to n-1
• for j := i + 1 to n
• if |ai – aj| > m then m := |ai – aj|
•{m is the maximum difference between any two
numbers in the input sequence}

•Comparisons: n-1 + n-2 + n-3 + … + 1

• = (n – 1)n/2 = 0.5n2 – 0.5n

•Time complexity is O(n2).

Fall 2002 CMSC 203 - Discrete Structures 27

•Another algorithm solving the same problem:

•procedure max_diff(a1, a2, …, an: integers)

•min := a1

•max := a1

•for i := 2 to n

• if ai < min then min := ai

• else if ai > max then max := ai

•m := max - min

•Comparisons: 2n - 2

•Time complexity is O(n).

Fall 2002 CMSC 203 - Discrete Structures 28

