


Topics to be covered




Algorithms

What is an algorithm?

*An algorithm Is a finite set of precise instructions for
performing a computation or for solving a problem.

*This Is a rather vague definition. You will get to know
a more precise and mathematically useful definition
when you attend CS420.

-But this one is good enough for now...

Fall 2002 CMSC 203 - Discrete Structures 3




Algorithms

Properties of algorithms:

Input from a specified set,

Output from a specified set (solution),
Definiteness of every step in the computation,
Correctness of output for every possible input,
Finiteness of the number of calculation steps,
Effectiveness of each calculation step and
Generality for a class of problems.

Fall 2002 CMSC 203 - Discrete Structures




Algorithm Examples

*We will use a pseuc
which slightly remino

ocode to specify algorithms,
s us of Basic and Pascal.

Example: an algorit

nm that finds the maximum

element in a finite sequence

*procedure max(a,,
‘max .= a,
fori:=2ton

a,, ..., a,. Integers)

- If max < a, then max := a,
{max Is the largest element}

Fall 2002 CM

SC 203 - Discrete Structures




Algorithm Examples

Another example: a linear search algorithm, that is,
an algorithm that linearly searches a sequence for a
particular element.

‘procedure linear_search(x: integer; a,, a,, ..., a,.

Integers)
o =1
‘while (I <n and x # a))
o l=1+1

if 1 < nthen location ;=1

else location ;=0

{location Is the subscript of the term that equals x, or
IS zero If X Is not found}

Fall 2002 CMSC 203 - Discrete Structures 6




Algorithm Examples

o|f ordered, a binary

t than linear search.

Ively restricts the
es In on the
ed.

Fall 2002 CMSC 203 - Discrete Structures 7




binary search for the letter '’

archiinterval
Anjiiimo prsuv Xz

ceniier element

Fall 2002 WSC 203 - Discrete Structures




searecninierval

acdfgnjlimoond 3 UG

cenerielement:

Fall 2002 ) 203 - Discrete Structures




searcniinterval

acdtitgnjlmoonrp

cenier element:

Fall 2002 203 - Discrete Structures

binary search for the letter 'j'

U v X Z

10




binary search for the letter 'j'

searcniinterval

acdfgn]limoobnr 3 UNVEE:

cenerielement:

Fall 2002 203 - Discrete Structures

11




binary search for the letter '’

zarcniinierval

acdfgnjlimoobnr s UNVEE

cenier element:

f ouna

Fall 2002 WSC 203 - Discrete Structures

12




Algorithm Examples

‘procedure binary_search(x: integer; a,, a,, ..., a,:
Integers)

i ;=1 {iis left endpoint of search interval}

/ :=n {j iIs right endpoint of search interval}

‘while (i <)

‘begin

e m:=L{+j2l

. ifx>a theni:=m+1
. elsej:=m

*end

If X = @, then location := |

else location ;=0

{location Is the subscript of the term that equals x, or
IS zero If X IS not found}

Fall 2002 CMSC 203 - Discrete Structures 13




Complexity

In general, we are not so much interested in the
time and space complexity for small inputs.

*For example, while the difference in time
complexity between linear and binary search is
meaningless for a sequence with n = 10, it is
gigantic for n = 230,

Fall 2002 CMSC 203 - Discrete Structures 14




Complexity

*For example, let us assume two algorithms A and B
that solve the same class of problems.

*The time complexity of A is 5,000n, the one for B Is
| 1.1"] for an input with n elements.

*For n = 10, A requires 50,000 steps, but B only 3,
so B seems to be superior to A.

*For n = 1000, however, A requires 5,000,000 steps,
while B requires 2.5-104! steps.

Fall 2002 CMSC 203 - Discrete Structures 15




Complexity

*This means that algorithm B cannot be used for
large Iinputs, while algorithm A is still feasible.

*So what Is important is the growth of the
complexity functions.

*The growth of time and space complexity with

Increasing Input size n Is a suitable measure for the
comparison of algorithms.

Fall 2002 CMSC 203 - Discrete Structures 16




Complexity

lgorithms A and B

IRpUIRSIZe Algoriinm A | Algddhpagh=

1 5),0)0)0]} any
10) 510),00)0) 3
10)¢) 50)0)0)0J0) 13,781
5000 5),0J010)(0J0]0) 251041
1,0)0)0) 0)0)0) SRIZIN I3 1(0#1392

Fall 2002 CMSC 203 - Discrete Structures



Complexity

*This means that algorithm B cannot be used for
large inputs, while running algorithm A is still
feasible.

*So what Is important is the growth of the
complexity functions.

*The growth of time and space complexity with

Increasing Input size n is a suitable measure for the
comparison of algorithms.

Fall 2002 CMSC 203 - Discrete Structures 18




The Growth of Functions

*The growth of functions is usually described using
the big-O notation.

Definition: Let f and g be functions from the
iIntegers or the real numbers to the real numbers.
*\We say that f(x) is O(g(x)) If there are constants C
and k such that

*[f(x)| < Clg(x)]

‘whenever x > K.

Fall 2002 CMSC 203 - Discrete Structures

19




The Growth of Functions

‘When we analyze the growth of complexity
functions, f(x) and g(x) are always positive.

*Therefore, we can simplify the big-O requirement to

f(X) < C-g(x) whenever x > k.

°|f we want to show that f(x) is O(g(x)), we only need

to find one pair (C, k) (which is never unique).

Fall 2002 CMSC 203 - Discrete Structures

20




The Growth of Functions

*The idea behind the big-O notation is to establish an
upper boundary for the growth of a function f(x) for
large X.

*This boundary Is specified by a function g(x) that is
usually much simpler than f(x).

*\We accept the constant C in the requirement
f(X) < C-g(X) whenever x > Kk,
‘because C does not grow with x.

‘We are only interested in large x, so it is OK if
f(x) > C.g(x) for x <Kk.

Fall 2002 CMSC 203 - Discrete Structures 21




The Growth of Functions

Example:

*Show that f(x) = x% + 2x + 1 is O(x?).

For x > 1 we have:

X2+ 2X + 1 < X2+ 2X% + X2
o= X2 + 2X + 1 < 4x?

*Therefore, for C=4 and k = 1:
f(x) < Cx? whenever x > K.

= f(X) IS O(X?).

Fall 2002 CMSC 203 - Discrete Structures

22




The Growth of Functions

*Question: If f(x) is O(x?), is it also O(x3)?

*Yes. x° grows faster than x?, so x3 grows also faster
than f(x).

*Therefore, we always have to find the smallest
simple function g(x) for which f(x) is O(g(x)).

Fall 2002 CMSC 203 - Discrete Structures 23




The Growth of Functions

Fall 2002 CMSC 203 - Discrete Structures

24




The Growth of Functions

A problem that can be solved with polynomial worst-
case complexity is called tractable.

*Problems of higher complexity are called
intractable.

*Problems that no algorithm can solve are called
unsolvable.

*You will find out more about this in CS420.

Fall 2002 CMSC 203 - Discrete Structures 25




Useful Rules for Big-0O

For any polynomial f(x) =ax"+a ,x"1+ ... + a,,
where a,, a,, ..., a, are real numbers,
f(x) is O(XM).

If f,(X) Is O(g,(x)) and f,(x) is O(g,(x)), then
(f; + £,)(X) Is O(max(g,(x), 9-(x)))

If f,(X) iIs O(g(x)) and f,(x) is O(g(x)), then
(f, + 15)(x) 1s O(g(X)).

If f,(X) is O(g,(X)) and f,(x) is O(g,(x)), then
(f1f2)(X) 1s O(g1(X) 9,(X)).

Fall 2002 CMSC 203 - Discrete Structures 26




Complexity Examples

*What does the following algorithm compute?

‘procedure who_knows(a,, a,, ..., a,: integers)
‘m:=0

fori:=1ton-1

. forj:=1+1ton

- If |a, — af > m then m = [a; — g

{m Is the maximum difference between any two
numbers In the input sequence}

Comparisons: n-1 +n-2+n-3+ ... +1
. =(n-1)n/2 =0.5n° - 0.5n

*Time complexity is O(n?).

Fall 2002 CMSC 203 - Discrete Structures

27




Complexity Examples

*Another algorithm solving the same problem:

‘procedure max_diff(a,, a,, ..., a,: integers)
‘min ;= al

'‘max = al

fori:=2ton

. If & < min then min := a,

. else if & > max then max := a

°*m := max - min
Comparisons: 2n - 2

*Time complexity is O(n).

Fall 2002 CMSC 203 - Discrete Structures

28




