


 

• Algorithms 

• What is an Algorithm? 

• Characteristics 

• Complexity 
 



•What is an algorithm? 
 

•An algorithm is a finite set of precise instructions for 
performing a computation or for solving a problem. 
 

•This is a rather vague definition. You will get to know 
a more precise and mathematically useful definition 
when you attend CS420.  

 

•But this one is good enough for now… 
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• Properties of algorithms: 
 

• Input from a specified set, 

• Output from a specified set (solution), 

• Definiteness of every step in the computation, 

• Correctness of output for every possible input, 

• Finiteness of the number of calculation steps, 

• Effectiveness of each calculation step and 

• Generality for a class of problems. 
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•We will use a pseudocode to specify algorithms, 

which slightly reminds us of Basic and Pascal. 
 

•Example: an algorithm that finds the maximum 

element in a finite sequence 

 

•procedure max(a1, a2, …, an: integers) 

•max := a1 

•for i := 2 to n 

• if max < ai then max := ai 

•{max is the largest element} 
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•Another example: a linear search algorithm, that is, 
an algorithm that linearly searches a sequence for a 
particular element. 
 

•procedure linear_search(x: integer; a1, a2, …, an:  
         integers) 
•i := 1 
•while (i  n and x  ai) 
• i := i + 1 
•if i  n then location := i 
•else location := 0 
•{location is the subscript of the term that equals x, or 
is zero if x is not found} 
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•If the terms in a sequence are ordered, a binary 

search algorithm is more efficient than linear search. 

 

•The binary search algorithm iteratively restricts the 

relevant search interval until it closes in on the 

position of the element to be located. 
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•procedure binary_search(x: integer; a1, a2, …, an:  
          integers) 
•i := 1   {i is left endpoint of search interval} 
•j := n  {j is right endpoint of search interval}  
•while (i < j) 
•begin 
• m := (i + j)/2 
• if x > am then i := m + 1 
• else j := m 
•end 
•if x = ai then location := i 
•else location := 0 
•{location is the subscript of the term that equals x, or 
is zero if x is not found} 
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•In general, we are not so much interested in the 

time and space complexity for small inputs. 

 

•For example, while the difference in time 

complexity between linear and binary search is 

meaningless for a sequence with n = 10, it is 

gigantic for n = 230. 
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•For example, let us assume two algorithms A and B 

that solve the same class of problems. 
 

•The time complexity of A is 5,000n, the one for B is 

1.1n for an input with n elements. 
 

•For n = 10, A requires 50,000 steps, but B only 3, 

so B seems to be superior to A. 
 

•For n = 1000, however, A requires 5,000,000 steps, 

while B requires 2.51041 steps.  
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•This means that algorithm B cannot be used for 

large inputs, while algorithm A is still feasible. 

 

•So what is important is the growth of the 

complexity functions. 

 

•The growth of time and space complexity with  

increasing input size n is a suitable measure for the 

comparison of algorithms.  
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• Comparison: time complexity of algorithms A and B 
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Algorithm A Algorithm B Input Size 

n 

10 

100 

1,000 

1,000,000 

5,000n 

50,000 

500,000 

5,000,000 

5109 

1.1n 

3 

2.51041 

13,781 

4.81041392 



•This means that algorithm B cannot be used for 

large inputs, while running algorithm A is still 

feasible. 

 

•So what is important is the growth of the 

complexity functions. 

 

•The growth of time and space complexity with  

increasing input size n is a suitable measure for the 

comparison of algorithms.  
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•The growth of functions is usually described using 

the big-O notation. 

 

•Definition: Let f and g be functions from the 

integers or the real numbers to the real numbers. 

•We say that f(x) is O(g(x)) if there are constants C 

and k such that 
 

•|f(x)|  C|g(x)| 
 

•whenever x > k. 
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•When we analyze the growth of complexity 

functions, f(x) and g(x) are always positive.  
 

•Therefore, we can simplify the big-O requirement to 
 

•f(x)  Cg(x)  whenever x > k. 

 

•If we want to show that f(x) is O(g(x)), we only need 

to find one pair (C, k) (which is never unique). 
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•The idea behind the big-O notation is to establish an 

upper boundary for the growth of a function f(x) for 

large x. 
 

•This boundary is specified by a function g(x) that is 

usually much simpler than f(x). 
 

•We accept the constant C in the requirement 
 

•f(x)  Cg(x)  whenever x > k, 
 

•because C does not grow with x. 
 

•We are only interested in large x, so it is OK if 

f(x) > Cg(x)  for x  k. 
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•Example: 
 

•Show that f(x) = x2 + 2x + 1 is O(x2). 
 

•For x > 1 we have: 
 

•x2 + 2x + 1  x2 + 2x2 + x2 

• x2 + 2x + 1  4x2 

 

•Therefore, for C = 4 and k = 1: 
 

•f(x)  Cx2 whenever x > k. 
 

• f(x) is O(x2). 
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•Question: If f(x) is O(x2), is it also O(x3)? 

 

•Yes. x3 grows faster than x2, so x3 grows also faster 

than f(x). 

 

•Therefore, we always have to find the smallest 

simple function g(x) for which f(x) is O(g(x)).  
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•“Popular” functions g(n) are 
•n log n, 1, 2n, n2, n!, n, n3, log n 
 

•Listed from slowest to fastest growth: 
 

•  1 
•  log n 
•  n 
•  n log n 
•  n2 

•  n3 

•  2n 

•  n! 
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•A problem that can be solved with polynomial worst-

case complexity is called tractable. 

 

•Problems of higher complexity are called 

intractable. 

 

•Problems that no algorithm can solve are called 

unsolvable. 

 

•You will find out more about this in CS420. 

 

Fall 2002 CMSC 203 - Discrete Structures 25 



•For any polynomial f(x) = anx
n + an-1x

n-1 + … + a0, 
where a0, a1, …, an are real numbers, 
•f(x) is O(xn). 
 

•If f1(x) is O(g1(x)) and f2(x) is O(g2(x)), then  

(f1 + f2)(x) is O(max(g1(x), g2(x))) 
 

•If f1(x) is O(g(x)) and f2(x) is O(g(x)), then 

(f1 + f2)(x) is O(g(x)). 
 

•If f1(x) is O(g1(x)) and f2(x) is O(g2(x)), then  

(f1f2)(x) is O(g1(x) g2(x)). 
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•What does the following algorithm compute? 
 

•procedure who_knows(a1, a2, …, an: integers) 
•m := 0 
•for i := 1 to n-1 
• for j := i + 1 to n 
•  if |ai – aj| > m then m := |ai – aj| 
•{m is the maximum difference between any two 
numbers in the input sequence} 

•Comparisons: n-1 + n-2 + n-3 + … + 1 

•                     = (n – 1)n/2 = 0.5n2 – 0.5n 
 

•Time complexity is O(n2). 
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•Another algorithm solving the same problem: 
 

•procedure max_diff(a1, a2, …, an: integers) 

•min := a1 

•max := a1 

•for i := 2 to n 

• if ai < min then min := ai 

• else if ai > max then max := ai 

•m := max - min 

•Comparisons: 2n - 2 
 

•Time complexity is O(n). 
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