
LECTURE 21 

COMBINATIONAL DESIGN 

USING MSI DEVICES 
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Asynchronous circuits: within large synchronous systems, it is often  desirable to 
allow certain subsystems to operate asynchronously  to reduce delay and 
power consumption 
 
Total state: combination of signals that appear at the primary input and 
 delay outputs 
 
Input state: combination of input signals  
 x1, x2, …, xl 

 
Secondary or internal state: combination  
 of signals at the delay outputs y1, y2, …, yk 

 
Secondary or internal variables: y1, y2, …, yk 

 
Excitation variables: Y1, Y2, …, Yk 
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Stable state: for a given input state, the circuit is said to be in a stable state  if 
and only if yi = Yi for i = 1, 2, …, k 

• In response to a change in the input state: the combinational logic produces a 
new set of values for the excitation variables, entering an unstable state 

•  When the secondary variables assume their new values (when y’s become equal 
to the corresponding Y’s): the circuit enters its next stable state 

– Thus, a transition from one stable state to another occurs only in response 
to a change in the input state 

 
Fundamental mode: when a change in input values has occurred, no other 
 change in any input value occurs until the circuit enters a stable 
 state 

• Single-input change (SIC) fundamental mode: a single input value is allowed to 
change at a time 

• Multiple-input change (MIC) fundamental mode: multiple input values can 
change at a time 
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Two type of hazards (glitches): logic and function 
• Logic hazards: caused by noninstantaneous changes in circuit signals 
• Function hazards: inherent in the functional specification 

 
Hazards pose a fundamental problem: a glitch may be misunderstood by 
 another part of the circuit as a valid transition and cause incorrect 
 behavior 
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Example: T(x,y,z) =    (2,3,5,7) 
• Static-1 logic hazard (SIC)  

 
 
 
 
 
 
Adjacent combinations: differ in the value of a single variable 

• E.g., x’yz and xyz 

 
SIC static logic hazard: transition between a pair of adjacent input  combinations, 
which correspond to identical output values, that may  generate a momentary 
spurious output value 

• Occurs when no cube in the K-map contains both combinations 
– Solution: cover both combinations with a cube 

 



1

1

1 1

xy
z

0

1

00 01 11 10

(a) Map for T = x y + xz.

x
y

x
z

G1

T

G2

1

1

(b) Gate network.

x
y

x
z

T1

1

y
z 1

1

1

1

(c) SIC hazard-free network



6 

Transition cube [m1,m2]: set of all minterms that can be reached from 
 minterm m1 and ending at minterm m2 

 
Example: Transition cube [010,100] contains: 000, 010, 100, 110 
 
Required cube: transition cube that must be included in some product of 
 the sum-of-products realization in order to get rid of the static-1 
 logic hazard 
 
Example: Required cube is [011,111] 
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Since in the sum-of-products realization of a function: no cube for any 
 product term can contain either of the two input combinations 
 involved in a 0->0 output transition, a static-0 logic hazard can 
 only occur if a product term has both xi and xi’ as input literals 

• Since there is no need to include such products: such hazards can be trivially 
avoided 

 
During a 0->1 output transition: if the 0 may change to 1 and then 0 and 
 finally stabilize at 1, then the sum-of-products realization is said to 
 have a dynamic 0->1 logic hazard 

• Dynamic 1->0 logic hazard is similarly defined 

 
Based on above reasoning: a dynamic 0->1 and 1->0 logic hazard is also 
 trivially avoidable in the SIC scenario 
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MIC scenario: several inputs change values monotonically, i.e., at most 
 once 

• If in this process, the function changes values more than once: the transition is 
said to have a function hazard 

 
Example: Function hazard: dotted arrow; static-1 logic hazard: solid arrow 
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Example (contd.): cover the solid arrow with a cube to get rid of the static-1  logic 
hazard 
 
 
 
 
 
 
 
 
 
Avoiding a static-0 logic hazard is trivial: just as in the SIC case 
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Example: solid arrow 
 
 
 
 
 
 
 
 
 
Necessary condition for the dynamic transition to be hazard-free 

• Make sure each of its 1->1 subtransitions is also hazard-free: ensured by 
including these subtransitions in some product of the sum-of-products 
realization 

• Subtransitions: [1110,1111], [1110,0110] – called required cubes of the dynamic 
transition 

– Necessary condition met in this example for these required cubes 
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Ensure that no AND gate turns on during the MIC transition 
• G1 temporarily turns on because product wz intersects the dynamic transition 

1110 -> 0111: called illegal intersection 
• Dynamic transition called a privileged cube 
• During this transition: inputs could be momentarily at 1111, which is a minterm 

of wz 
• Disallow illegal intersections of privileged cubes: reduce wz to wy’z 
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1->1 MIC transition: must be completely covered by a product term 
 
0->0 MIC transition: does not lead to a hazard 
 
1->0 (0->1) MIC transition: ensure that every product term that intersects 
 the MIC transition also contains its starting (end) point 
 

To obtain a hazard-free sum-of-products implementation H of function f,  
 ensure: 

• Each required cube is contained in some implicant of H 
• No implicant of H illegally intersects any specified dynamic transition 

– Such an implicant is called a dynamic-hazard-free implicant           (dhf-
implicant) 

– A dhf-prime implicant is a dhf-implicant not contained in any other dhf-
implicant 

• This problem requires that we only make use of dhf-prime implicants while 
covering every required cube in sum-of-products minimization 

– Similar to Quine-McCluskey minimization  
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Example:  
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illegal intersection.
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Hazard-non-increasing logic transformations: used to derived hazard-free 
 multi-level realization from hazard-free two-level realization 

• If the initial circuit is hazard-free: so is the final multi-level circuit 
• Associative law and its dual: (x + y) + z  x + (y + z); (xy)z  x(yz) 
• De Morgan’s theorem and its dual: (x + y)’  x’y’; (xy)’  x’ + y’ 
• Distributive law: xy + xz => x(y + z) 
• Absorption law: x + xy => x 
• x + x’y => x + y law 
• Insertion of inverters at primary inputs and circuit output 

Example: AND-OR realization free of dynamic hazard for 1110 -> 0111 
• So is the multi-level realization: x’y + wx + yz’ + wy’z + wy = (x’ + z’ + w)y + wx + 

wy’z 
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Flow table: analogous to the state table 
 
Example: Consider a sequential circuit with two inputs x1 and x2 and one 
 output z.  The initial input state is x1 = x2 = 0.  The output value is  to 
be 1 if and only if the input state is x1 = x2 = 1 and the  preceding input state 
is x1 = 0, x2 = 1 
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Reduction of primitive flow table has two functions: 
• Elimination of redundant stable states 
• Merging those stable states which are distinguishable by input states 

 
Example: Rewrite primitive flow table like a state table 
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                 Merger graph 
Maximal compatibles: {(123), (145)} 

Reduced flow tables 
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Assignment of output values to the unstable states in the reduced flow 
 table 

• When the circuit is to go from one stable state to another stable state associated 
with the same output value: assign the same output value to the unstable state 
en route to avoid a momentary opposite value 

• When the state changes from one stable state with a given output value to 
another stable state with a different output value: the transition may be 
associated with either of these output values 

– When the relative timing of the output value change is of no importance: 
choose the output value so as to minimize logic 
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Example: Reduced flow table                       Excitation and output table  
 
 
 
 
 
Y = x1x2’ + x1y 
z = x1x2y’ 

Y

x2x1

D
y

z
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Synthesis procedure for SIC fundamental-mode asynchronous circuits: 
1. Construct a primitive flow table from the verbal description: specify only those 

output values that are associated with stable states 
2. Obtain a minimum-row reduced flow table: use either the merger graph or merger 

table for this purpose 
3. Assign secondary variables to the rows of the reduced flow table and construct 

excitation and output tables: specify output values associated with unstable states 
according to design requirements 

4. Derive excitation and output functions, and the corresponding hazard-free circuit 
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Example: Design an asynchronous sequential circuit with two inputs, x1 
 and x2, and two outputs, G and R, as follows.   

• Initially, both input values and both output values are 0  
• Whenever G = 0 and either x1 or x2 becomes 1, G becomes 1 
• When the second input becomes 1, R becomes 1 
• The first input value that changes from 1 to 0 turns G equal to 0   
• R becomes 0 when G is 0 and either input value changes from 1 to 0 
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     Merger graph           Reduced flow table           Excitation and output table 
 
 
 
 
 
 
Y = (x1 + x2)y + x1x2 

G = (x1 + x2)y’ + x1x2 

R = y + x1x2 
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Assignment of the secondary variable values to the rows of the reduced flow  table 
should be such that: the circuit will operate correctly even if  different delays 
are associated with the secondary elements 
Race: where a change of more than one secondary variable is required 

• Noncritical race: the final state does not depend on the order in which the 
secondary variables change 

• Critical race: the final state reached depends on the order in which the secondary 
variables change – must always be avoided  

• Races can sometimes be avoided by directing the circuit through intermediate 
unstable states 

– Cycle: circuit goes through a unique sequence of unstable states 

Illustration of races and cycles Valid assignment that eliminates critical races 
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Valid state assignment: avoids critical races and undesired cycles 
 
Adjacent states: states whose assignments differ in only one variable 
 
Example:    Flow table                                          Transition diagram 
 
 
 
 
 
 
Column 00: Row b must be adjacent to row a 
Column 01: Rows a and b must be adjacent to row c 
Column 11: Row c must be adjacent to row b 
Column 10: Row c must be adjacent to row a 
If noncritical races are permitted: column 01 requirement may be eliminated 
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a
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Avoiding all races: not possible when the transition diagram is a triangle 
• Use augmented flow table 

 
 
 
 
 
 
Example: Augmentation of the flow table may require an increase in the 
 number of secondary variables 
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MIC fundamental-mode machines: several inputs change in a narrow time 
 interval and no further inputs change values until the machine has 
 stabilized 

• Narrow time interval: still quite restrictive 

Burst-mode machines: also allow several inputs to change values  concurrently 
• However, all the changes need not occur in a narrow time interval 
• They can monotonically change in any order at any time within a given input 

burst and respond with a set of output value changes, called the output burst 

Burst-mode specification: initial values of inputs and outputs can be  specified or 
just assumed to have a default value of 0 
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Restrictions on burst-mode specifications: 
• Non-empty input bursts: if no input undergoes a transition, the machine remains 

in its current state 
• Maximal set property: no input burst on an outgoing arc from any state must be 

a subset of an input burst on another outgoing arc from the same state 
• Unique entry point: each state should have a unique set of input and output 

values through which it is entered 

 
Example: Assume in starting state A, x1x2 = 00 and z1z2 = 00 

• B: 11/11 
• C: 01/10 
• D: 10/01 
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Example (contd.): Specification                            Flow table 
 
 
 
 
 
 
Complete state: the state the machine goes to and corresponding output 
 values 
Flow table for a burst-mode specification does not have any function 
 hazards: since the complete state does not change until the full 
 input burst has arrived 

• It is always possible to obtain a hazard-free sum-of-products realization H for 
each secondary variable and output: since for each such variable, the required 
cube can be included in some product of H and no product of H illegally 
intersects any privileged cube because all transitions in any row of the flow table 
have the same complete start state which will be included in the required cubes 
for these transitions 
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Example: Specification                  Transition diagram      State assignment 
 
 
 
 
 
 
 
                                       Excitation and output table 
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z1,z2: 
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Synthesized circuit:  
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