
LECTURE 21

COMBINATIONAL DESIGN

USING MSI DEVICES

2

Asynchronous circuits: within large synchronous systems, it is often desirable to
allow certain subsystems to operate asynchronously to reduce delay and
power consumption

Total state: combination of signals that appear at the primary input and
 delay outputs

Input state: combination of input signals
 x1, x2, …, xl

Secondary or internal state: combination
 of signals at the delay outputs y1, y2, …, yk

Secondary or internal variables: y1, y2, …, yk

Excitation variables: Y1, Y2, …, Yk

3

Stable state: for a given input state, the circuit is said to be in a stable state if
and only if yi = Yi for i = 1, 2, …, k

• In response to a change in the input state: the combinational logic produces a
new set of values for the excitation variables, entering an unstable state

• When the secondary variables assume their new values (when y’s become equal
to the corresponding Y’s): the circuit enters its next stable state

– Thus, a transition from one stable state to another occurs only in response
to a change in the input state

Fundamental mode: when a change in input values has occurred, no other
 change in any input value occurs until the circuit enters a stable
 state

• Single-input change (SIC) fundamental mode: a single input value is allowed to
change at a time

• Multiple-input change (MIC) fundamental mode: multiple input values can
change at a time

4

Two type of hazards (glitches): logic and function
• Logic hazards: caused by noninstantaneous changes in circuit signals
• Function hazards: inherent in the functional specification

Hazards pose a fundamental problem: a glitch may be misunderstood by
 another part of the circuit as a valid transition and cause incorrect
 behavior

5

Example: T(x,y,z) = (2,3,5,7)
• Static-1 logic hazard (SIC)

Adjacent combinations: differ in the value of a single variable

• E.g., x’yz and xyz

SIC static logic hazard: transition between a pair of adjacent input combinations,
which correspond to identical output values, that may generate a momentary
spurious output value

• Occurs when no cube in the K-map contains both combinations
– Solution: cover both combinations with a cube



1

1

1 1

xy
z

0

1

00 01 11 10

(a) Map for T = x y + xz.

x
y

x
z

G1

T

G2

1

1

(b) Gate network.

x
y

x
z

T1

1

y
z 1

1

1

1

(c) SIC hazard-free network

6

Transition cube [m1,m2]: set of all minterms that can be reached from
 minterm m1 and ending at minterm m2

Example: Transition cube [010,100] contains: 000, 010, 100, 110

Required cube: transition cube that must be included in some product of
 the sum-of-products realization in order to get rid of the static-1
 logic hazard

Example: Required cube is [011,111]

1

1

1 1

xy
z

0

1

00 01 11 10

7

Since in the sum-of-products realization of a function: no cube for any
 product term can contain either of the two input combinations
 involved in a 0->0 output transition, a static-0 logic hazard can
 only occur if a product term has both xi and xi’ as input literals

• Since there is no need to include such products: such hazards can be trivially
avoided

During a 0->1 output transition: if the 0 may change to 1 and then 0 and
 finally stabilize at 1, then the sum-of-products realization is said to
 have a dynamic 0->1 logic hazard

• Dynamic 1->0 logic hazard is similarly defined

Based on above reasoning: a dynamic 0->1 and 1->0 logic hazard is also
 trivially avoidable in the SIC scenario

8

MIC scenario: several inputs change values monotonically, i.e., at most
 once

• If in this process, the function changes values more than once: the transition is
said to have a function hazard

Example: Function hazard: dotted arrow; static-1 logic hazard: solid arrow

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

1

x
y

w
x

f

1

1

w
z

1

y
z

1

9

Example (contd.): cover the solid arrow with a cube to get rid of the static-1 logic
hazard

Avoiding a static-0 logic hazard is trivial: just as in the SIC case

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

1

x
y

w
x

1

1

w
z

1

y
z

1

w
y

1

1

1
1

10

Example: solid arrow

Necessary condition for the dynamic transition to be hazard-free

• Make sure each of its 1->1 subtransitions is also hazard-free: ensured by
including these subtransitions in some product of the sum-of-products
realization

• Subtransitions: [1110,1111], [1110,0110] – called required cubes of the dynamic
transition

– Necessary condition met in this example for these required cubes

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

1

x
y

w
x

f

1

1

w
z

y
z

1

w
y

G1

1

0
0

11

Ensure that no AND gate turns on during the MIC transition
• G1 temporarily turns on because product wz intersects the dynamic transition

1110 -> 0111: called illegal intersection
• Dynamic transition called a privileged cube
• During this transition: inputs could be momentarily at 1111, which is a minterm

of wz
• Disallow illegal intersections of privileged cubes: reduce wz to wy’z

x
y

w
x

f

1

1

w
z

y
z

1

w
y

G1

1

0
0

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

1

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

1

x
y

w
x

f

1

1

w

z

y
z

1

w
y 1

0
0

0y 0

12

1->1 MIC transition: must be completely covered by a product term

0->0 MIC transition: does not lead to a hazard

1->0 (0->1) MIC transition: ensure that every product term that intersects
 the MIC transition also contains its starting (end) point

To obtain a hazard-free sum-of-products implementation H of function f,
 ensure:

• Each required cube is contained in some implicant of H
• No implicant of H illegally intersects any specified dynamic transition

– Such an implicant is called a dynamic-hazard-free implicant (dhf-
implicant)

– A dhf-prime implicant is a dhf-implicant not contained in any other dhf-
implicant

• This problem requires that we only make use of dhf-prime implicants while
covering every required cube in sum-of-products minimization

– Similar to Quine-McCluskey minimization

13

Example:

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

1

(c) Prime implicants with no

illegal intersections.

0

0

0

0

1

1

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

1

(a) Required cubes.

0

0

0

0

1

1

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

1

(b) Privileged cubes.

0

0

0

0

1

1

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

1

(d) Prime implicant xz has an

illegal intersection.

0

0

0

0

1

1

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

1

0

0

0

0

1

1

(e) Prime implicant xz reduced to

dhf-prime implicant xy z.

Hazard-free sum-of-products:
w + yz + x’y + xy’z

14

Hazard-non-increasing logic transformations: used to derived hazard-free
 multi-level realization from hazard-free two-level realization

• If the initial circuit is hazard-free: so is the final multi-level circuit
• Associative law and its dual: (x + y) + z  x + (y + z); (xy)z  x(yz)
• De Morgan’s theorem and its dual: (x + y)’  x’y’; (xy)’  x’ + y’
• Distributive law: xy + xz => x(y + z)
• Absorption law: x + xy => x
• x + x’y => x + y law
• Insertion of inverters at primary inputs and circuit output

Example: AND-OR realization free of dynamic hazard for 1110 -> 0111
• So is the multi-level realization: x’y + wx + yz’ + wy’z + wy = (x’ + z’ + w)y + wx +

wy’z

1

1

1

1

1

1

1

00 01 11 10

00

01

11

10

wx
yz

11

1

x
y

w
x

f

1

1

w

z

y
z

1

w
y 1

0
0

0y 0

1

f

w

y

w
y

z
x

z

w

x

0

15

Flow table: analogous to the state table

Example: Consider a sequential circuit with two inputs x1 and x2 and one
 output z. The initial input state is x1 = x2 = 0. The output value is to
be 1 if and only if the input state is x1 = x2 = 1 and the preceding input state
is x1 = 0, x2 = 1

x1

x2

z

1

1

1

0

0

0

1 32542

Input-output sequences

Partial flow table Primitive flow table

16

Reduction of primitive flow table has two functions:
• Elimination of redundant stable states
• Merging those stable states which are distinguishable by input states

Example: Rewrite primitive flow table like a state table

1

3

25

4

 Merger graph
Maximal compatibles: {(123), (145)}

Reduced flow tables

17

Assignment of output values to the unstable states in the reduced flow
 table

• When the circuit is to go from one stable state to another stable state associated
with the same output value: assign the same output value to the unstable state
en route to avoid a momentary opposite value

• When the state changes from one stable state with a given output value to
another stable state with a different output value: the transition may be
associated with either of these output values

– When the relative timing of the output value change is of no importance:
choose the output value so as to minimize logic

18

Example: Reduced flow table Excitation and output table

Y = x1x2’ + x1y
z = x1x2y’

Y

x2x1

D
y

z

19

Synthesis procedure for SIC fundamental-mode asynchronous circuits:
1. Construct a primitive flow table from the verbal description: specify only those

output values that are associated with stable states
2. Obtain a minimum-row reduced flow table: use either the merger graph or merger

table for this purpose
3. Assign secondary variables to the rows of the reduced flow table and construct

excitation and output tables: specify output values associated with unstable states
according to design requirements

4. Derive excitation and output functions, and the corresponding hazard-free circuit

20

Example: Design an asynchronous sequential circuit with two inputs, x1
 and x2, and two outputs, G and R, as follows.

• Initially, both input values and both output values are 0
• Whenever G = 0 and either x1 or x2 becomes 1, G becomes 1
• When the second input becomes 1, R becomes 1
• The first input value that changes from 1 to 0 turns G equal to 0
• R becomes 0 when G is 0 and either input value changes from 1 to 0

21

 Merger graph Reduced flow table Excitation and output table

Y = (x1 + x2)y + x1x2

G = (x1 + x2)y’ + x1x2

R = y + x1x2

1

3

2

5

4

6

22

Assignment of the secondary variable values to the rows of the reduced flow table
should be such that: the circuit will operate correctly even if different delays
are associated with the secondary elements
Race: where a change of more than one secondary variable is required

• Noncritical race: the final state does not depend on the order in which the
secondary variables change

• Critical race: the final state reached depends on the order in which the secondary
variables change – must always be avoided

• Races can sometimes be avoided by directing the circuit through intermediate
unstable states

– Cycle: circuit goes through a unique sequence of unstable states

Illustration of races and cycles Valid assignment that eliminates critical races

00 01 11 10

00

01

11

10

x1x2y1y2

Y1Y2

11

11

11

11

01

01

11

11

10

11

10

10

00

00

00

10

23

Valid state assignment: avoids critical races and undesired cycles

Adjacent states: states whose assignments differ in only one variable

Example: Flow table Transition diagram

Column 00: Row b must be adjacent to row a
Column 01: Rows a and b must be adjacent to row c
Column 11: Row c must be adjacent to row b
Column 10: Row c must be adjacent to row a
If noncritical races are permitted: column 01 requirement may be eliminated

(00)

bc

a

(11)

(10)

24

Avoiding all races: not possible when the transition diagram is a triangle
• Use augmented flow table

Example: Augmentation of the flow table may require an increase in the
 number of secondary variables

(01)

b

c

a

(11)

(10)

d

(11)

(01)
a d

d

d

y1y2

y3

0

1

00 01 11 10

c

b

Flow table Transition diagram Race-free flow table

00 01 11 10

00

01

11

10

x1x2y1y2

Y1Y2

00

00

11

10

00

01

10

00

00

01

01

11

10

11

11

10

a

b

c

c

(a) Two assignments to row c.

00 01 11 10

00

01

11

10

x1x2y1y2

Y1Y2

00

00

11

--

00

01

10

00

00

01

01

--

01

11

11

--

a

b

c

(b) Utilizing an unspecified

entry as an unstable state.

00 01 11 10

000

001

011

010

x1x2y1y2y3

State

1

1

1

6

7

8

4

4

5

2

3

2

a

b

c

100

101

111

110

d 1

3

3

5

5 6

25

MIC fundamental-mode machines: several inputs change in a narrow time
 interval and no further inputs change values until the machine has
 stabilized

• Narrow time interval: still quite restrictive

Burst-mode machines: also allow several inputs to change values concurrently
• However, all the changes need not occur in a narrow time interval
• They can monotonically change in any order at any time within a given input

burst and respond with a set of output value changes, called the output burst

Burst-mode specification: initial values of inputs and outputs can be specified or
just assumed to have a default value of 0

A

B D

C

x1+,x2+/

z1+,z2+

x1+,x2-/

z1-,z2+

x1-/z2-

x1-/z2-

26

Restrictions on burst-mode specifications:
• Non-empty input bursts: if no input undergoes a transition, the machine remains

in its current state
• Maximal set property: no input burst on an outgoing arc from any state must be

a subset of an input burst on another outgoing arc from the same state
• Unique entry point: each state should have a unique set of input and output

values through which it is entered

Example: Assume in starting state A, x1x2 = 00 and z1z2 = 00

• B: 11/11
• C: 01/10
• D: 10/01
 A

B D

C

x1+,x2+/

z1+,z2+

x1+,x2-/

z1-,z2+

x1-/z2-

x1-/z2-

27

Example (contd.): Specification Flow table

Complete state: the state the machine goes to and corresponding output
 values
Flow table for a burst-mode specification does not have any function
 hazards: since the complete state does not change until the full
 input burst has arrived

• It is always possible to obtain a hazard-free sum-of-products realization H for
each secondary variable and output: since for each such variable, the required
cube can be included in some product of H and no product of H illegally
intersects any privileged cube because all transitions in any row of the flow table
have the same complete start state which will be included in the required cubes
for these transitions

A

B D

C

x1+,x2+/

z1+,z2+

x1+,x2-/

z1-,z2+

x1-/z2-

x1-/z2-

28

Example: Specification Transition diagram State assignment

 Excitation and output table

A

B D

C

x1+,x2+/

z1+,z2+

x1+,x2-/

z1-,z2+

x1-/z2-

x1-/z2-

A

B C

D

D

C

y1
y2

0

1

0 1

A

B

29

Y1,Y2:

1

1

0

0

00 01 11 10

00

01

11

10

x1x2
y1y2

1

Y1 map

1 11

0 0 0

0

dhf-prime

implicants

Required cubes

x1x2y2 y1y2 x1x2y1

x1y2

x2y1

x1y1

y1y2

x2y2

Minimal hazard-free sum-of-products

Y1 = x1y2 + y1y2 + x1y1

1

1

0

0

00 01 11 10

00

01

11

10

x1x2
y1y2

0

Y2 map

1 01

0 0 1

1

dhf-prime

implicants

Required cubes

x1x2y1 x1x2y2

x2y1

x2y2

x1y2

y1y2

Minimal hazard-free sum-of-products

Y2 = x1x2y1 + x1y2 + x2y2

x2y1y2 x1y1y2x2y1y2

x1x2y1

30

z1,z2:

1

1

0

0

00 01 11 10

00

01

11

10

x1x2
y1y2

0

z1 map

1 01

0 0 1

1

0

0

0

0

00 01 11 10

00

01

11

10

x1x2
y1y2

1

z2 map

0 10

0 0 1

1

dhf-prime

implicants

Required cubes

x1x2y1

Minimal hazard-free sum-of-products

z1 = Y2 = x1x2y1 + x1y2 + x2y2

x1x2y1

x1x2y1

x1x2y2

x1y1y2

x1x2y1

x1y1y2

Minimal hazard-free sum-of-products

z2 = x1x2y1 + x1x2y1

31

Synthesized circuit:

Y2

z2

Y1

x2x1

D

D
y1

y2

z1

