LECTURE 10

COMBINATIONAL DESIGN USING MSI DEVICES

Flipflop Conversions

The purpose is to convert a given type A FF to a desired type B FF using some conversion logic.

Excitation Table

The key here is to use the excitation table, which shows the necessary triggering signal (SR, JK, D and T) for a desired flip flop state transition $Q_t - Q_{t+1}$:

Q_t	Q_{t+1}	S	R	J	K	D	Т
0	0	0	Х	0	X	0	0
0	1	1	0	1	X	1	1
1	0	0	1	x	1	0	1
1	1	х	0	х	0	1	0

Excitation Table of Flip flops based on characteristics table

Convert a D-FF to a T-FF

The output of D flip flop should be as the output of T flip flop.

We need to design the circuit to generate the triggering signal D as a function of T and Q: D = f(T, Q)

Consider the excitation table of T and D Flip flops.

Write Down Excitation Table of T, Qn and Qn+1, D. For the K-map, consider T and Qr As Input and D as output.

$$D = TQn' + T'Qn (Ex-OR gate)$$

Т	$Q_{\mathbf{n}}$	Q_{n+1}	D	
0	0	0	0	
1	0	1	1	←
1	1	0	0	
0	1	1	1	←

Convert a D-FF to a T-FF

Treating as a function of and current FF state Q (Qt), we have:

$$D = T'Q + TQ' = T \oplus Q$$

