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Topics to be covered

Pulse Code Modulation



Ise Code Modulation (PCM)

e Pulse code modulation (PCM) is produced by analog-to-
digital conversion process.

e Asin the case of other pulse modulation techniques,
the rate at which samples are taken and encoded must

conform to the Nyquist sampling rate.

e The sampling rate must be greater than, twice the
highest frequency in the analog signal,

.fs > 2.fA(rnaX)




3.6 Quantization Process
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Define partitioncell

g me<m<m,,f, k=12 L (3.21)

Where m, is the decision level or the decision threshold.

Amp litudequantization : The process of transforming the
sample amplitude m(nT,) into a discrete amp litude

v(nT,) as shownin Fig 3.9

If m(t) € J, then thequantizer outputis ve where v,k =1,2,---, L
re the representation or reconstruction levels , m,,, —m, is thestepsize.
appingv = g(m) (3.22)

e quantizer characteristic, which is a staircase function.

12



Output Output
level level

41— 4 -

21— o
| | | | Input | | | | Input
—4 -2 0 2 4 level —4 2 0 2 4 level

-2 -2

-4 — -4

(a) (b)

Figure 3.10 Two types of quantization: (a) midtread and (b) midrise.
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Pulse Code Modulation
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Figure 3.13 The basic elements of a PCM system.



Quantization (nonuniform quantizer)

- law
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Figure 3.14 Compression laws. (a) x-law. (b) A-law.
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Encoding

TABLE 3.2 Binary number system
for R = 4 bits/sample

Ordinal Number of Level Number Expressed as Binary

Representation Level Sum of Powers of 2 Number
0 0000
1 2 0001
2 2 0010
3 21 + 2° 0011
4 22 0100
5 2= + 2° 0101
6 2% + 21 0110
7 22428 + 27 0111
8 27 1000
9 2° + 2° 1001

10 2° + 21 1010
11 i + 21 4+ 2° 1011

12 2% 4 2* 1100
13 23 + 27 + 2° 1101
14 23 4+ 2% + 2! 1110
15 23 +224+2V+2° 1111




Line codes:

1. Unipolar nonreturn-to-zero (NRZ) Signaling
2. Polar nonreturn-to-zero(NRZ) Signaling
3. Unipor nonreturn-to-zero (RZ) Signaling

4. Bipolar nonreturn-to-zero (BRZ) Signaling

5. Split-phase (Manchester code)
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Figure 3.15 Line codes for the electrical representations of binary data.
(a) Unipolar NRZ signaling. (b) Polar NRZ signaling.

(c) Unipolar RZ signaling. (d) Bipolar RZ signaling.

e) Split-phase or Manchester code.




p—

Delta function
}» of weight 1/2

Normalized power spectral density
Normalized power spectral density

Normalized frequency
(h)

0.5 - - T T T T T T 0.9 T T T T T T T T T

h
{ Delta function
of weight 1

0.25

Delta function
of weight 0.1

Normalized power spectral density
Normalized power spectral density

= e

Normalized frequency
(© Normalized frequency

(d)

o
o

Normalized power spectral density

Normalized frequency
(e)

FIGURE 3.16 Power spectra of line codes: (¢) Unipolar NRZ signal. (b) Polar NRZ signal.
(¢) Unipolar RZ signal. (d) Bipolar RZ signal. (¢) Manchester-encoded signal. The frequency is
normalized with respect to the bit rate 1/T,, and the average power is normalized to unity.




erential Encoding (encode information in terms of signal
nsition; a transition is used to designate Symbol o)

(a) Original binary data 0 1 1 0 1 0 0 1

(b) Differentially encoded data 1 0 0 0 1 1 0 1 1

(c) Waveform /_
Reference bit
Time —
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measure factors: bit error rate (BER) and jitter.
ing and Filtering



3.8 Noise consideration in PCM systems

(Channel noise, quantization noise)
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| TABLE 3.3 Influence of E,/Ny on the

| probability of error
For a Bit Rate of 10° b/s,
Probability of This Is About One
E,/Ny Error P, Error Every
4.3 dB 107 102 second
8.4 197 10~ second
10.6 19" 10 seconds
12.0 1078 20 minutes
13.0 10-10 1 day

14.0 107 3  months




Time-Division Multiplexing
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Figure 3.19 Block diagram of TDM system.
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.10 Digital Multiplexers

. High-speed =
2 Multiplexer = transmission = Demultiplexer 2
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.11 Virtues, Limitations and Modifications of PCM
Advantages of PCM

1. Robustness to noise and interference

2. Efficient regeneration

3. Efficient SNR and bandwidth trade-off

4. Uniform format

5. Ease add and drop

6. Secure



