
Internet Fundamentals

Lecture-29

Internet Security Protocols:
Specification and Modeling

Contents
Internet Layers, Basics

Management, Implementation or Design Errors

Designing Correct Protocols: The Avispa contribution

IETF Groups and Activities

Sec Protocols: Kerberos, AAA,

IPsec, IKE, IKEv2, Wlan,

PKI, TLS

High-level Protocol Spec. Language (hlpsl): Syntax,

Semantics, Goals, Examples

Outlook: MobileIP, HIP, Pana

Conclusions
O Internet offers agent many identities

O user, ip, mac, tcp port, ... What is “A”, “ID_A”?
O Many types of attackers (or channels)

O over the air, authentic channels, connection channels
O safer routes

O Many types of DoS attacks
O flodding, bombing, starving, disrupting

O Many types of properties
O besides authentication and secrecy
O “Incomplete protocols” (need to add extra messages to prove

authentication goals)
O key control, perferct forward secrecy, ...
O layered properties

O if attacker ... then ..., if attacker ... then ...

Internet
Protocols define
O Format and order of msgs sent and

received among network entities, and
O actions taken on msg transmission,

receipt
O Examples: TCP, IP,

HTTP, FTP,PPP
Internet: “network of networks”
O Standards

O RFC: Request for Comments
O IETF: Internet

Engineering Task Force

local ISP

company
network

administration
domains

core
router

host

server

mobile

access
router

Protocol layering in Internet

httpAppl.

802.3

HTTP-Protocol

Mobile Node
(MN)

Server

Access-Router

ISDN

http

tcpTrans. TCP-Protocol tcp

ipNetw. IP-Protocol ipipIP-Protocol

Eth.-Protocol Ethernet
pppLink /

MAC PPP-Protocol ppp

hdlc HDLC-Protocol hdlc
Ethernet

PHY

„Indepentde
nt“
Layers

Headers

Tunneling

Internet Network Architecture

Internet

Internet/Web Applications

link
phy

ip
tcp
http
www

link
phy

ip
link
phy

ip
link
phy

ip
link
phy

ip
link
phy

ip
link
phy

ip
link
phy

ip
tcp
http
www

Peer
(Client)

Peer
(Server)

Encapsulation

TCP segment

IP datagramm

Ethernet frame
64 - 1500 bytes

HTML
user data

ip
ip hdr

http
appl. hdr

tcp
tcp hdr application data

802.2
Ethernetip hdr tcp hdr appl. hdr user data

14 bytes 20 bytes 20 bytes

At which layer security?

Access Point
or Gateway

http

tcp

ip

Ethernet

http

tcp

ip

Ethernet

Host

Application
Layer

Transport
Layer

Network
Layer

Data Link
Layer

Physical
Layer

Wep

IPsec

TLS, WTLS

Kerberos, CMS,
custom token protocols

Separation of Concerns
Most security protocols today are separated into two parts:

1) Authentication and key exchange protocols

2) Protection of data traffic

Step (1) is usually the most difficult one. Sometimes this
step is again separated into sub-steps for performance
reasons.

Internet protocol
Architecture

html xml xsl smil

802.2
802.3 802.4 802.5 802.11

HTTP FTP SMTP DNS SNMP

SDH GSMATMISDN

NFS

encapPPP ARP

W3C

IETF

ITU
ETSI
ATMF

SCTP

M3UA

IP

Internet

www

TCP UDP

Some protocols in the TCP/IP Suite
SMTP TelnetBGP FTP HTTP

TCP

IP

OSPF RSVPIGMP ICMP

SNMP

UDP

DIAMETER

SCTP

BGP = Border Gateway Protocol

DIAMETER = (2 x RADIUS) = New AAA Protoc

FTP = File Transfer Protocol

HTTP = Hypertext Transfer Protocol

ICMP = Internet Control Message Protocol

IGMP = Internet Group Management Protocol

IP = Internet Protocol

MIME = Multi-Purpose Internet Mail Extension

OSPF = Open Shortest Path First

RSVP = Resource ReSerVation Protocol

SMTP = Simple Mail Transfer Protocol

SNMP = Simple Network Management Protocol

TCP = Transmission Control Protocol

TCP = Transmission Control Protocol

UDP = User Datagram Protocol

Securing the Infrastructure
O Applications need complex, reliable protocols for service

discovery, session control, guaranteeing QoS, etc.
O Network control mechanisms and routing protocols have

minimal or no authentication at all
O Infrastructure mechanisms often may not use IPSec or

TLS to secure their operations

AAA Definitions
Authentication

Verifying an identity (distinguishing identifier) claimed by or for
a system entity. This is done presenting authentication
information (credentials) that corroborates the binding between
the entity and the identifier. (2828)

Entity authentication
Assuring one party (through acquisition evidence) of the
identity of a second party involved in a protocol, and that the
second has actually participated (i.e., is active at, or
immediately prior to, the time the evidence is acquired).

AAA Definitions
Message authentication
A party is corroborated as the source of specified data created at

some (typically unspecified) time in the past, and data integrity,
but no uniqueness or timeliness guarantees.

Methods for providing data origin authentication include:
O 1. message authentication codes (MACs)
O 2. digital signature schemes
O 3. appending (prior to encryption) a secret authenticator value to

encrypted text.

A difference btw. entity and msg authentication:
O message authentication provides no time-liness guarantee
O entity authentication implies actual communications with verifier

during execution of the protocol

AAA Definitions
Authorization
An "authorization" is a right or a permission granted to an entity

to access a system resource. An "authorization process" is a
procedure for granting such rights. (2828) Here: Policy-based.
Others: ACL, capability tokens.

Accounting
The collection of resource consumption data for the purposes of

capacity and trend analysis, cost allocation, auditing, and
billing. Accounting management requires that resource
consumption be measured, rated, assigned, and
communicated between appropriate parties.

AAAA Definitions
Accountability

The property of a system (including all of its system
resources) that ensures that the actions of a system
entity may be traced uniquely to that entity, which can
be held responsible for its actions. (2828)

Authentication
(Claimed-ID, Credential)

This makes no sense.
Credentials belong to
claimed-ID, so what?

(Probably I knew that before)

(Claimed-ID, Credential
[Port | IP-Address])

This, alone, makes no sense.
Claimed-ID is now

at port xyz,so what?
In the next message?

({Port | IP-Address | Claimed-ID} ,
Credential, {Req | Msg})

This makes sense.
Claimed-ID is requesting this

or telling that.

In connectionless communication, entity authentication without a meaningful
message other than the claim of being a particular entity makes no sense.

Security Relations

(Claimed-ID, Credential, Req)
How can the router verify the
Credentials and check that
the Req is forn Claimed-ID?

The router has to know
something special about the
Claimed-ID: he has to have a

Security Relation
(pre-established) or obtain one.

Examples:
 Knowledge of the validity of a Public Key (Digital certificates, PKI)
 Shared secret (password, key) Note: in this case the SR is bidirectional

Authentication Credentials
O Examples:

O Digital certificates (PKI)
O f(secret key, time-stamp)
O rsp := f(secret key, chall), i.e. responses to Challenges

(Claimed-ID , Credential,

Req)

(Claimed-ID, Req)

(chall)

(resp)

Key Establishment
O Protocol whereby a shared secret becomes available to

two or more parties, for subsequent cryptographic use.
O Subdivided into

O key transport and
O key agreement

O Key transport: one party creates or otherwise obtains a
secret value, and securely transfers it to the other(s).

O Key agreement: a shared secret is derived by two (or
more) parties as a function of information contributed by, or
associated with, each of these

Key Establishment
Authentication term Central focus

authentication depends on context of usage

entity authentication
identity of a party, and aliveness at a given
instant

data origin (=msg)
authentication

identity of the source of data (+integrity)

(implicit) key authentication
identity of party which may possibly share a
key

key confirmation
evidence that a key is possessed by some
party

explicit key authentication
evidence an identified party possesses a
given key

Key Agreement -- Properties
O (Implicit) Key authentication:

O one party is assured that no other party aside from a
specifically identified second party (and possibly additional
identified trusted parties) may gain access to a particular
secret key.

O independent of the actual possession of such key by the
second party.

O Key confirmation:
O One party is assured that a second (possibly unidentified)

party actually has possession of a particular secret key.
O Explicit key authentication: both

O (implicit) key authentication and
O key confirmation hold.

Key Agreement -- Properties
O Authenticated key establishment

O key establishment protocol which provides key
authentication.

O Identity-based key establishment
O identity information (e.g., name and address, or an

identifying index) of the party involved is used as the party’s
public key.

O Identity-based authentication protocols may be defined
similarly.

Session Keys
An ephemeral secret, i.e., restricted to a short time period,

after which all trace of it is eliminated. Reasons:
1. to limit available ciphertext (under a fixed key) for

cryptanalytic attack;
2. to limit exposure, with respect to both time period and

quantity of data, in the event of (session) key
compromise;

3. to avoid long-term storage of a large number of distinct
secret keys (in the case where one terminal
communicates with a large number of others), by creating
keys only when actually required;

4. to create independence across communications sessions
or applications

Key Agreement -Classification
1. Nature of the authentication:

a. entity authentication,
b. key authentication, and
c. key confirmation.

2. Reciprocity of authentication. If provided, entity
authentication, key authentication, and key confirmation
may be unilateral or mutual

3. Key freshness. A key is fresh (from the viewpoint of one
party) if it can be guaranteed to be new, as opposed to
possibly an old key being reused through actions of
either an intruder or authorized party. This is related to
key control

Key Agreement - Classification

4.Key control:
the key is derived from joint information, and neither
party is able to control or predict the value of the key

5. Efficiency.
(a) number of message exchanges
(b) bandwidth (total number of bits)
(c) complexity of computations
(d) precomputation to reduce on-line computational

complexity

Key Agreement - Classification

6. Third party requirements
(a) on-line (real-time),
(b) off-line, or
(c) no third party;
(d) degree of trust required in third party (e.g., trusted to

certify public keys vs. trusted not to disclose long-term
secret keys).

7. Type of certificate used and manner by which initial
keying material is distributed

8. Non-repudiation
some type of receipt that keying material has been
exchanged.

Perfect forward secrecy and
known-key attacks

O Perfect forward secrecy
O compromise of long-term keys does not compromise past session keys.

O Previous traffic is locked securely in the past.
O It may be provided by a Diffie-Hellman procedure.

O If long-term secret keys are compromised, future sessions are subject to
impersonation by an active intruder

O Immunity to known-key attack: When past session keys are compromised, do
not allow

O Passive attacker to compromise future session keys
O impersonation by an active attacker in the future
(Known-key attacks on key establishment protocols are analogous to

known-plaintext attacks on encryption)

Many types of keys
O Sealing key: a shared secret key used for computing

cryptographic checkvalues (MACs)
O Signature key: a private key used for signing,
O Verification key: a public key used for checking

signatures, or a secret key used for checking MACs
O Encipherment key: either secret or public key,
O Decipherment key: either secret or private key.

O Keys shold be used only for one purpose

Contents
Internet Layers, Basics

Management, Implementation or Design Errors

Designing Correct Protocols: The Avispa contribution

IETF Groups and Activities

Sec Protocols: Kerberos, AAA,

IPsec, IKE, IKEv2, Wlan,

PKI, TLS

High-level Protocol Spec. Language (hlpsl): Syntax,

Semantics, Goals, Examples

Outlook: MobileIP, HIP, Pana

Management Problems: Passwords, Cards, Tokens
O Passwords are

O often shared
O guessable
O written down on pieces of paper

O Smart cards and hand-held tokens are
O expensive
O People forget them
O Card readers draw too much power from hand-helds

Management Problems: WLAN/WEP

O WEP is optional,
O many real installations never even turn on encryption

O irrelevant how good the cryptography is if it is never used.

O By default, WEP uses a single shared key for all users
O often stored in software-accessible storage on each device
O If any device is stolen or compromised, change the shared

secret in all of the remaining devices
O WEP does not include a key management protocol

Is PKI secure? More
Management Problems

O Most users don’t know what certificates are.
O Most certificates’ real-world identities aren’t checked by

users.
O Meaningless Certificates:

O Why should Dow, Jones own the www.wsj.com certificate?
O Is that certificate good for interactive.wsj.com?

O Is it NASA.COM or NASA.GOV?
O MICROSOFT.COM or MICR0S0FT.COM?
O What about MICROSОFT.COM? (Cyrillic “O”, do you see it?)

O Effectively, we have no PKI for the Web.

http://www.wsj.com

DoS Attacks against Authentication Protocols

Flooding attacks: Spoofed messages cause target to
perform expensive cryptographic operations:
Attacker gets the nodes to perform PK operations. It may
spoof a large number of “signed messages” with random
numbers instead of signatures

O Target will verify the signatures before rejecting the messages.
O Symmetric encryption, hash functions and non-cryptographic

computation are rarely the performance bottleneck (unless the
cryptographic library is optimized only for bulk data)

O If a node creates a state during protocol execution, the
attacker may start an excessive number of protocol runs
and never finish them

O The stronger the authentication, the easier it may be for
an attacker to use the protocol features to exhaust
target’s resources.

SYN Flooding: Implementation Issues

O Host accepts TCP open requests, from spoofed locations
O Half-open connection queue fills up
O Legitimate open requests are dropped
O Implementation issues
O Mostly solved:

O use cheaper data structure for queue,
O random drop when queue is full

Design Problems: WLAN/WEP

Internet

E(m)

E(m) D(E(m))

m

m

No perfect Security
O Many different types of Attacks
O Many different types of Security Mechanisms

O at different SW layers
O with different strength

O Management, Implementation or Design Errors
O Design errors affect more people

O Some risks
O may be acceptable (low damage or very low risk)
O too expensive to fully prevent

Authentication Levels
O None (no authentication)

O SASL Anonymous [RFC2245]
O Authentication based on source IP address
O Diffie-Hellman

O Weak (vulnerable against eavesdroppers)
O FTP USER/PASS
O POP3 USER/PASS

O Limited (vulnerable against active attacks)
O One-time Passwords
O HTTP Digest Authentication
O IMAP/POP Challenge/Response

O Strong (protection against active attacks)
O Kerberos
O SRP Telnet Authentication
O Public Key Authentication

Variable Security
O Different security mechanisms

O variable levels of guarantees
O variable security properties
O variable cost

O Challenge:
O find an acceptable level of protection
O at affordable price

O Find:
O most inexpensive security mechanisms

O even if they are weak!
O that solve your problem

Attackers
O Most are joy hackers.
O Soon also Terrorists?
O Spies? Governments? Industrial spies?
O For profit?
O Some businesses report targeted attempts:

O Vendor prices changed on a Web page
O ISP hacked by a competitor
O Customers on pay-per-packet nets targets of packet storms

Well known Attacks: DOS
O Denial of Service Attacks
O Attacker doesn’t break in

O he denies you access to your own resources.
O Many incidents reported, more are likely.
O You lose:

O if it’s cheaper for the attacker to send a message
O than for you to process it

O Denial of Service Attacks are hard to prevent
O in particular using security measures at higher layers only

O Thumbrules:
O Try to be stateless – allocate resources as late as possible.
O Do expensive computations as late as possible.
O Move heavy computation to the initiator of the protocol run.

DOS Example: “Smurf” Attack
O Attacker sends “ping” to intermediate network’s broadcast

address.
O Forged return address is target machine.
O All machines on intermediate network receive the “ping”, and

reply, clogging their outgoing net and the target’s incoming net.
O Firewalls at target don’t help -- the line is clogged before it

reaches there.

Well known Attacks: Sniffers

O Password collection
O Credit card numbers
O NFS file handle collection
O DNS spoofing

Attacks to the infrastructure: Routing Attacks

O Routers advertise
O own local nets,
O what they’ve learned from neighbors

O Routers trust dishonest neighbors
O Routers further away must believe everything they hear
O First solutions in the literature

GSM Today

O AV = (chall, resp, C), C = Cipher Key

O AV generation is not so fast => batch generation

O MS is able to calculate: C = Ck(chall)

Therefore MS and SN share C.
O MS authenticates to SN, but SN does not authenticate

to MS

MS SN HE
ADR

ADS(AV1,.. AVn)UAR(chall)
UAS(resp)

LUR

GSM Today: Problem

• If attacker gets hold of one (for instance, used) AV:

– he may create false base station SN’

– force MS to communicate to SN’ (using C)

– decipher/encipher

– use another (legal) user MS’ (with key C’)

• Possible:

– says(A,B,m) /\ notes(C,A,m) /\ C != B

– notes(A,B,m) /\ says(B,A,m’) /\ m != m’

MS’ SNMS SN’C C’

UMTS: Idee

• MS is able to check that challenge is consistent: consk(chall)
• AVi also contain a sequence number, that may be

reconstructed by the MS: seq = seqk(chall)
• MS accepts AVi only if

seqMS < seqk(chall) < = seqMS + 

MS SN HE
ADR

ADS(AV1,.. AVn)UAR(chall)
UAS(resp)

LUR

SynchronFailure

UMTS: Idee

seqMS < seqk(chall) < = seqMS + 

MS SN HE
ADR

ADS(AV1,.. AVn)UAR(chall)
UAS(resp)

LUR

SynchronFailure

Is there no MiM Attack?
Is there no deadlock?
Such design errors would be very expensive:

Replace firmware in many towers
and in millions of Cellular Phones

Contents
Internet Layers, Basics

Management, Implementation or Design Errors

Designing Correct Protoc.: The Avispa contribution

IETF Groups and Activities

Sec Protocols: Kerberos, AAA,

IPsec, IKE, IKEv2, Wlan,

PKI, TLS

High-level Protocol Spec. Language (hlpsl): Syntax,

Semantics, Goals, Examples

Outlook: MobileIP, HIP, Pana

AvispaO http://www.avispa-project.org

O U. of Genova,

LORIA-Lorraine,

ETHZ,

Siemens AG

O Shared-cost RTD (FET Open) Project IST-2001-39252

O Started on Jan 1, 2003

http://www.avispa-project.org

PBK Construction
Alice sends m1, m2, …, mN,

Bob is able to recognize they have same source

Alice constructs a public/private key pair PBK = (p,s)

Alice disclosed the public key p to Bob along with the initial packet

Bob verifies messages signed with the private key s=inv(p)

Bob knows the messages were sent by one node

If replay protection: sequence number or timestamp

Is there a cheaper way?

Generalized PBK:
Requirements

Bob receives m1, m2, …, mN,
authentically generated by one source

If the first message A  B arrives without modification,
all other messages shall be protected in a way that B
recognizes alteration

MiM attack in the first message:
A  E  B : B is receiving messages from E

But if first message is OK, the system should protect against
MiM

DoS:
If attacker can only insert messages: DoS resilience

1. Hash Construction
If Alice knows in advance which messages she wants to send:

m1, m2, …, mN:
{mi} := <mi , H(mi+1)> (Send mi together with H(mi+1)).

1. Quiz: OK?

No. An attacker can replace {mi} := <mi , H(mi+1)>
by {mi} := <mi , H(i+1)>

And then replace {mi+1} := <mi+1 , H(mi+2)> by
{i+1} := < i+1 , H(i+2)> etc.

{mi} := <mi , H(mi+1, mi+2, …, mN)> 2. Quiz: OK?

I think, yes, this seems easy to prove.

2. Hash Construction
O Alice chooses a hash sequence:

h1= H(h2)= H(H(h3))= Hi(hi+1) =.. = HN-1(hN):
O {mi} := <mi , H(mi , hi)>

What is wrong? (Too trivial for a quiz!)
Bob has no means to check HAshes.

{mi} := <mi , H(mi , hi), hi > 3. Quiz: OK?

No. Attacker replaces {mi} := <mi , H(mi , hi), hi > by
< i , H(i , hi), hi >

3. Hash Construction
Hash sequence: h1= H(h2)= H(H(h3)) =… = Hi(hi+1) =.. = HN-1(hN)

{mi} := <mi , H(mi , hi), hi-1 >
4. Quiz: OK?

No. Attacker intercepts 2 consecutive messages
{mi} := < mi , H(mi , hi), hi-1 > {mi+1} := <mi+1 , H(mi+1 , hi), hi >
replaces
{mi} by < i , H(i , hi), hi-1 >

Idea: Alice waits for an Acknowledge {acki} := <H(mi , ĥi), ĥi >
(Bob uses seq: ĥ1= H(ĥ2)= H(H(ĥ3)) =… = Hi(ĥi+1) =.. = HN-1(ĥN))

5. Quiz: OK?

I think, yes. Is somebody sure? What is not nice about the solution?

That B is forced to use a hash series, one for each peer. (DoS)

4. Hash Construction
Hash sequence: h1= H(h2)= H(H(h3)) =… = Hi(hi+1) =.. = HN-1(hN)

{mi} := <mi , H(mi , hi), hi-1 >
Alice waits for an Acknowledge {acki} := <H(mi , ĥi), ĥi , H(ĥi+1)>

6. Quiz: OK?

I think, yes. Is somebody sure?
Another idea: instead of acknowledgments, use time frames.

This will work for multimedia. Both A and B divide their time in
intervals: A sends at the beginning of his intervals, B discards
messages that arrive too late.

7. Quiz: Dos that work?

I think, yes. Is somebody sure?

Motivation for the project
O There are many techniques for the automatic analysis of

security protocols, BUT
O tools usually come with specific working assumptions

(specification language, security Goals, modelling
assumptions, bounds, . . .)

O This makes it very difficult
O to use the tools productively (for the non-expert user) and
O to assess and compare the potential of the proposed

techniques.

Objectives of the AVISPA
Project

1. Build a open architecture supporting
a) design of security protocols using a comfortable notation

and web-based user-friendly interface
b) seamless integration and systematic assessment of new

automated techniques for the validation of security
protocols.

2. Build and make publicly available a library of formalized
IETF protocols and associated security problems.

3. Develop and tune three promising and complementary
state-of-the-art technologies for automatic formal
analysis:
a) On-the-fly Model-Checking
b) Constraint Theorem-Proving
c) SAT-based Model-Checking

Architecture of the AVISPA
Tool

Open to other
technologies

High-Level Protocol Specification Language

Intermediate Format

On-the-fly Model-Checker

CL-based Theorem-Prover

SAT-based Model-Checker

On-the-fly Model-Checking
O Context: On-the-fly model checking supports the

incremental exploration of very large or infinite state
systems. Lazy evaluation in languages like Haskell
provides a powerful platform for building flexible, efficient
search engines.

O Approach: Lazy evaluation is combined with symbolic
(unification-based) methods to build on demand, and
explore, the protocol search space.

O Advantages:
O Declarative specification of infinite data structures, reduction

methods, and heuristics.
O Modular design, easy integration of

heuristics/improvements.

Constraint Theorem-
Proving

O Context: Rewrite-based, first-order theorem provers have recently
appeared as very effective tools for equational reasoning. daTac
combines rewriting with constraints to handle properties such as
associativity/commutativity.

O Approach: Messages exchanges and intruder activities can be directly
translated into rewrite rules. Searching for an attack amounts to
deducing a contradiction.

O Advantages:
O Protocol representation is simple and intuitive.
O Advancements in deduction can be easily incorporated.
O Fast prototyping of model enhancements (e.g. algebraic properties of

operators).

SAT-based Model-Checking
O Context: Dramatic speed-up of SAT solvers in the last decade:

O Problems with thousands of variables are now solved routinely in
milliseconds.

O Approach: Bounded model-checking of security protocols based on a
constructive translation of the IF into SAT with iterative deepening on the
number of steps.

O Advantages:
O Most of the generated SAT instances are solved in milliseconds.
O Declarative.
O Plug and play integration of different SAT solvers 
O Improvements of SAT technology can be readily exploited.

Contents
Internet Layers, Basics

Management, Implementation or Design Errors

Designing Correct Protocols: The Avispa contribution

IETF Groups and Activities

Sec Protocols: Kerberos, AAA,

IPsec, IKE, IKEv2, Wlan,

PKI, TLS

High-level Protocol Spec. Language (hlpsl): Syntax,

Semantics, Goals, Examples

Outlook: MobileIP, HIP, Pana

Internet History

O 1961: Kleinrock - queueing theory
shows effectiveness of packet-
switching

O 1964: Baran - packet-switching in
military nets

O 1967: ARPAnet conceived by
Advanced Research Projects
Agency

O 1969: first ARPAnet node
operational

O 1972:
O ARPAnet demonstrated publicly
O NCP (Network Control Protocol)

first host-host protocol
O first e-mail program
O ARPAnet has 15 nodes

1961-1972: Early packet-switching principles

Internet History

O 1970: ALOHAnet satellite network
in Hawaii

O 1973: Metcalfe’s PhD thesis
proposes Ethernet

O 1974: Cerf and Kahn - architecture
for interconnecting networks

O late70’s: proprietary architectures:
DECnet, SNA, XNA

O late 70’s: switching fixed length
packets (pre ATM)

O 1979: ARPAnet 200 nodes

O Cerf and Kahn’s internetworking
principles:

O minimalism, autonomy - no
internal changes required to
interconnect networks

O best effort service model
O stateless routers
O decentralized control

O define today’s Internet architecture

1972-80: Internetworking, new and proprietary nets

Internet History

O 1983: deployment of TCP/IP
O 1982: SMTP e-mail
O 1983: DNS name-to-IP-address

translation
O 1985: FTP
O 1986, Jan: first IETF meeting 21

attendees
O 1986, Oct: 4th IETF, first IETF with non-

government vendors
O 1987, Feb: 5th IETF: Working Groups

were introduced
O 1987, Jul: 7th IETF, > 100 attendees
O 1988: TCP congestion control

O New national networks: Csnet, BITnet,
NSFnet, Minitel

O 100,000 hosts connected to
confederation of networks

O 1993 July: IETF met in Amsterdam, first
IETF meeting in Europe

O US/non-US attendee split was (+is)
nearly 50/50.

1980-1990: new protocols, a proliferation of
networks

Internet Organizations
ISOC (Internet Society)

political, social, technical aspects of the Internet
http://www.isoc.org/

IAB (Internet Architecture Board)
oversight of Internet architecture and standards process;

liaisons with e.g. ITU-T, ISO
http://www.iab.org/iab/

IETF
(Internet Engineering Task Force)

standardizes Internet protocols;
open community for engineers,
scientists, vendors, operators

http://www.ietf.org/

IRTF
(Internet Research

Task Force)
pre-standards R&D

http://www.irtf.org/

http://www.isoc.org/
http://www.iab.org/iab/
http://www.ietf.org/
http://www.irtf.org/

IETF

O Proceedings of each IETF plenary

O Meeting minutes,
O working group charters (which include the working group mailing lists),
are available on-line see www.ietf.org.

• 3 meetings a year.
– working group sessions,
– technical presentations,
– network status reports,
– working group reporting, and
– open IESG meeting.

http://www.ietf.org.

IETF Overview
O Forum for working groups to coordinate technical developments of new

protocols.
O Development and selection of standards within the Internet protocol suite.

IETF mission
1. Identify and propose solutions to pressing operational and technical

problems in the Internet
2. Specify the development or usage of protocols and the near-term

architecture, to solve technical problems for the Internet;
3. Facilitate technology transfer from the Internet Research Task Force (IRTF)

to the wider Internet community
4. Provide a forum for the exchange of relevant information within the Internet

community

Internet Society

O Financial and legal support of the IETF.

O Provides insurance coverage for many of the people in
the IETF process

O Acts as a public relations channel for the IETF

IAB (Internet Architecture Board)O Long-range planning + coordination of various areas of IETF
O Discuss long-term and emerging issues in the Internet
O Review the charter of new WGs

O architectural consistency and integrity
O Sponsor and organize the IRTF
O Organize workshops

O in-depth reviews of specific architectural issues.
O recommendations to the IETF and IESG

O Board for appeals against IESG actions
O Oversees IETF liaisons with other standards bodies

IANA (Internet Assigned
Numbers Authority)

O Core registrar for the IETF's activities is the IANA.
O Examples

O TCP port numbers
O MIME types.

O Nowadays the IETF is generally no longer involved in the IANA's domain
name and IP address assignment functions, which are overseen by ICANN.

IESG
O Technical management of IETF activities and the Internet standards process
O Get WGs started and finished
O Ratify or correct the output from the IETF's WGs

O ADs are review the drafts coming out of areas other than their own
O Make sure that non-WG drafts that are about to become RFCs are correct.
O Vote on each Internet Draft that is becoming an RFC,

O 2 IESG members block a draft from moving forward
O Decide if WG’s result has real consensus
O Prevent IETF WG are at odds with other WG

IETF Current Areas
O Applications (APP) - Protocols seen by user programs, such as e-mail and the

Web
O Internet (INT) - Different ways of moving IP packets and DNS information
O Operations and Management (OPS) Administration and monitoring
O Routing (RTG) - Getting packets to their destinations
O Security (SEC) - Authentication and privacy
O Transport (TSV) - Special services for special packets
O User Services (USV) - Support for end users and user support organizations
O General (GEN) - Catch-all for WGs that don't fit in other areas (which is very few)

IETF procedures
O The IETF is a group of individual volunteers (~ 4 000

woldwide)
O Work is being done on mailing lists (plus 3 meetings/year)
O No formal membership, no formal delegates
O Participation is free and open
O >110 working groups with well defined tasks and

milestones
O Major US vendors dominate the IETF
O IETF does not decide about the market, but:

the approval of the IETF is required for global market
success.

Protocol design is done in
working groups

O Basic Principles
O Small focused efforts preferred to larger comprehensive ones
O Preference for a limited number of options

O Charter
O Group created with a narrow focus
O Published Goals and milestones
O Mailing list and chairs' addresses

O "Rough consensus (and running code!)"
O No formal voting (IESG decides)
O Disputes resolved by discussion and demonstration
O Mailing list and face-to-face meetings

O Consensus made via e-mail
O (no "final" decisions made at meetings)

Contents
Internet Layers, Basics

Management, Implementation or Design Errors

Designing Correct Protocols: The Avispa contribution

IETF Groups and Activities

Sec Protocols: Kerberos, AAA,

IPsec, IKE, IKEv2, Wlan,

PKI, TLS

High-level Protocol Spec. Language (hlpsl): Syntax,

Semantics, Goals, Examples

Outlook: MobileIP, HIP, Pana

Kerberos

An authentication system for
distributed systems

Introduction
O Based on Needham - Schroeder
O Three-Party Protocol
O Extensions according to Denning - Sacco.
O Developed at MIT as part of the project Athena
O Versions 1 - 3 internal
O Currently the following Kerberos Version are published:

O Kerberos v4
O Kerberos v5

O Kerberos v5 Clarifications/Revisions (not finished)

Three Party Protocols

Y. Ding and H. Petersen: "Eine Klassifikation von Authentifikationsmodellen",
Proc. Trust Center'95, DuD Fachbeiträge, 292 - 302, 1995.

Nonce-based Protocol

Timestamp-based ProtocolKerberos

Kerberos in three Acts

AS+
KDC

SrvReq
({tt}k, {A,B,ttmax,k}B)

A B

AuthRsp({k}A, {A,B,ttmax,k}B)

AS+
KDC

SrvReq
({k}B)

AReq(A,B)

A B

ARsp({k}A, {k}B)

({tt}k, {k}B)

• Drawback: User
has to re-type
password for every
new service ticket
request

• Solution: Ticket
Granting Ticket

AS TGS
KDC

Kerberos Single-Sign-On
O Obtaining additional tickets

O Don't want to present user's password each time the user performs
authentication with a new service

O Caching the user's password on the workstation is dangerous
O Cache only tickets and encryption keys (collectively called credentials) for

a limited period, typically ~8 hours
O When the user first logs in, an authentication request is issued and a ticket

and session key for the ticket granting service is returned by the
authentication server

O A special ticket, called a ticket granting ticket, is used to subsequently
request a session key with a new verifier

O The TGT may be cached

Complete Kerberos

Protocol
< client communicate with AS to obtains a ticket for access to TGS >
1. Client requests AS of KDC to supply a ticket in order to

communicate with TGS.
- request (C, TGS) C : client id

2. AS returns a ticket encrypted with TGS key(Kt) along with a session
key Kct.
- return = ({ticket}Kt, {Kct}Kc Kct : TGS session key
- ticket = (C, TGS, start-time, end-time, Kct) Kc : client key

< client communicate with TGS to obtain a ticket for access to other server >
3. Client requests TGS of KDC to supply a ticket in order to communicate with order server.

- request = ({C, timestamp}Kct, {ticket}Kt, S) S: server key
4. TGS checks the ticket, If it is valid TGS generate a new random session key Kcs.

TGS returns a ticket for S encrypted by Ks along with a session key Kcs.
- return = ({ticket}Ks, {Kcs}Kct) ticket = (C, S, start-time, end-time, Kcs)

< client communicate with the server to access an application >
client decrypt {Kcs}Kct with Kct to get Kcs.
client generate authenticator A with the information from ticket.
- A = ({C, S, start-time, end-time, address}Kcs)

5 . Client sends the service request to the server along with the ticket and A.
- ({ticket}Ks, {C, S, start-time, end-time, address}Kcs, request

6. The server decrypt ticket using Ks and check if C, S, start, end times are valid
If service request is valid, use Kcs in the ticket to decrypt authenticator
Server compares information in the ticket and in the authenticator. If agreement, the service

request accepted.

AS TGS

Client Server

KDC

1 2 3
4

5
6

(from: B. C. Neuman + T. Ts’o: IEEE Communications Magazine SEP. 1994)

Kerberos Entities
O Kerberos Key Distribution Center (KDC) consists of

O Kerberos Authentication Server (AS)
O Kerberos Ticket Granting Server (TGS)
O KDC supplies tickets and session keys

O Realm
O Kerberos Administrative Domain that represents a group of principals
O A single KDC may be responsible for one or more realms

O Principal
O Name of a user or service
O Principal Identifier: Unique identity for a principal

(service/host@realm_name)
O Example: krbtgt/SYSSEC.UNI-KLU@SYSSEC.UNI-KLU

mailto:krbtgt/SYSSEC.UNI-KLU@SYSSEC.UNI-KLU

The Kerberos Ticket
O A Kerberos Ticket contains of two parts:

O Unencrypted part
O Encrypted part

O Fields of the unencrypted part:
O Version number for the ticket format
O Realm that issued a ticket
O Server identity

O Fields of the encrypted part:
O Flags
O Key
O Client name/Client realm
O Transited
O Start-time, End-time, Renew-till
O Host addresses and authorization data

Example: Service Ticket
O Service Ticket is

encrypted with the secret
key of the service S.

O The ticket itself does not
provide authentication.
This is the responsibility of
the Authenticator.

Session
Key k(a,s)

User@Realm

Service Request for
Service S

Time
Stamp

Network
Address

Lifetime

Key(s)

Comparison Kerberos
V4/V5 (1/3)

Limitations with V4 Improvements with V5

Weak Timestamp
mechanism

Nonce-based replay protection with
KRB_PRIV and KRB_SAFE. Replay
protection for the client in the AS and
TGS msgs.

No authentication
forwarding

Right delegation via forwardable and
proxiable tickets

Reuse of “session keys”
possible

No reuse possible, real session keys
for KRB_PRIV and KRB_SAFE
messages with sub-keys in AP_REQ

Flawed DES in cipher-block
chaining mode

Standard DES in CBC mode

The AS and TGS response msgs are not double-encrypted in Krb V5 => U2U Auth.

Comparison Kerberos
V4/V5 (2/3)Limitations with V4 Improvements with V5

Limitations with principal
naming

Less restrictions with a multi-component
principal naming

Available for IP only Multi-protocol support introduced

Cross-realm authentication
requires n*(n-1)/2 keys
between communicating realms

Hierarchy of realms introduced.

Only DES encryption algorithm
available (export restrictions)

Generic interface supports several
algorithms, still limitations exist

Problems with the Kerberos V4
pseudo-random number
generator used for the session
key generation (2^56 ->
2^20)

Problems fixed in Kerberos V5

Comparison Kerberos
V4/V5 (3/3)

Limitations with V4 Improvements with V5

Sender encodes messages
in his native format.

Messages are described and encoded
with the ASN.1 syntax.

No batch processing
support for tickets
available.

Batch processing available with the
help of postdated tickets.

Limited ticket
lifetime(~21h)

Time format based on NTP -> very
long lifetime

Weak message
digest/checksum routines
(CRC-32)

Several message digest routines
available

No support for handheld
authenticators (One-time
Passwords)

Support added via the pre-
authentication data field

O Limitations with V4 O Improvements with V5

Kerberos V4 Cross-Realm
AuthenticationTicket Flow

Client's Realm

Server's Realm

TGT
Request/

Reply

Client Server

Service
Ticket

Request/
Reply

Service
Request/Reply

lKDC

rKDCCross-
Realm
 Ticket

Request/
Reply

R
ep

ly
:

{T
ic

ke
t}

k(
ltg

s)

R
ep

ly
:

{T
ic

ke
t}

k(
rt

gs
)

Reply: {T
icket}k(s)

inter-realm key

Request: {Ticket}k(s)

Kerberos V4 Cross-Realm
O Realm navigation does not

assume a realm-structure.

O KDC must share a inter-realm
key with all neighboring
realms it wants to
communicate with.

O Scalability problems due to
the complex key distribution.

Realm A

Realm C

Realm D

Realm B

Inter-Realm Key

A-B, B-A

Inter-Realm Key A-C, C-A

Inter-R
ealm

 Key

B-C
, C

-B

In
te

r-R
ea

lm
 K

ey

B-

D
, D

-B

Inter-Realm Key

C-D, D-C
In

te
r-R

ea
lm

 K
ey

A-
D

, D
-A

Kerberos V5 Cross-Realm
ImprovementO Hierarchical structure

may be used.
O Consulting a database is

an alternative
O The client and the KDC

run the same algorithm
to determine the
authentication path.

O Short-cuts limit the
number of requests.

Realm

UNI-KLU

FINANZ.UNI-KLU SYSSEC.UNI-KLU

Realm Realm Realm

OEH.UNI-KLU

 STUDENT.SYSSEC.UNI-KLU STAFF.SYSSEC.UNI-KLU

Realm Realm

Int
er-

Realm
 Key

In
te

r-R
ea

lm
 K

ey Inter-Realm Key

Inter-Realm KeyInter-Realm Key

Short-Cut
Inter-R

ealm
 Key

Kerberos V5 Cross-Realm
Authentication

O The sequence of realms used in the authentication process is referred as the
authentication path.

O The client determines the authentication path by using a realm-naming
convention similar to the DNS naming convention. The server runs the same
algorithm but he may return a TGT that is closer to the final realm (if
available).

O Example:
O Client located at STUDENT.SYSSEC.UNI-KLU
O Server located at FINANZ.UNI-KLU
O Required TGTs:

O krbtgt/STUDENT.SYSSEC.UNI-KLU@STUDENT.SYSSEC.UNI-KLU
O krbtgt/SYSSEC.UNI-KLU@STUDENT.SYSSEC.UNI-KLU
O krbtgt/UNI-KLU@SYSSEC.UNI-KLU
O krbtgt/FINANZ.UNI-KLU@UNI-KLU

O The transited path is the list of realms that were actually used to obtain the
current ticket.

mailto:krbtgt/STUDENT.SYSSEC.UNI-KLU@STUDENT.SYSSEC.UNI-KLU
mailto:krbtgt/SYSSEC.UNI-KLU@STUDENT.SYSSEC.UNI-KLU
mailto:krbtgt/UNI-KLU@SYSSEC.UNI-KLU

Kerberos V5 Ticket Types
O Initial Ticket

O Indicates that this ticket is the result of a initial authentication.
O Used for ticket issued by the KDC and not by the TGS.
O Required by some programs (e.g. password changing programs)
O Gives the assurance that the user has typed in his password recently.

O Invalid Ticket
O Validated by the KDC in a TGS request.
O Often used with postdated tickets

O Postdated Ticket
O Purpose: Request a ticket for later use I.e. batch jobs
O Invalid until the start ticket has been reached
O Ticket must be sent to the KDC to convert it to a valid one.

Kerberos V5 Ticket Types
O Renewable Ticket

O Used for batch jobs.
O Ticket has two expiration dates.
O Ticket must be sent to the KDC prior the first expiration to renew it.
O The KDC checks a “hot list” and then sends a new ticket with a new session key

back.
O Proxiable Ticket

O Makes it possible for a server to act on behalf of the client to perform a specific
operation. (e.g. print service)

O Purpose: granting limited rights only
O Forwardable Ticket

O Similar to proxiable ticket but not bound to a specific operation
O Mechanism to delegate user identity to a different machine/service
O Sample application: telnet

Where is Kerberos used?
Architecture:
O PacketCable

Operating Systems:
O Unix
O Windows 2000 for all authentication procedures
O Windows CE .NET

Protocols (examples):
O Resource Reservation Protocol (RSVP)
O Telnet; NFS; FTP; SNMP; TLS; KINK; DNS

APIs / Carriers for Authentication Protocols
O GSS-API; SASL; EAP;

AAA (Diameter) for MobIP
V4

HAFA

MN

Home DomainVisited Domain

AAA-H
AAA-V

1. Agent advertisement + Challenge

2. Registration Request 7. Registration Reply

3. AA-Mobile-Node-Request

4. Home-Agent-MobileIP-Request

5. Home-Agent-MobileIP-Answer

6. AA-Mobile-Node-Answer

8. Registration Request

9. Registration Reply

(8. + 9. Auth. with extensions:
MN-FA-, MN-HA-,FA-HA-Auth)

7‘. Now there are SA:
MN-FA, MN-HA, FA-HA

What is IPSec?
O IPSec is the standard suite of protocols for network-layer

confidentiality and authentication of IP packets.
O IPSec = AH + ESP + IPComp + IKE
O In particular the following features are provided:

O Connectionless integrity
O Data origin authentication
O Replay Protection (window-based mechanism)
O Confidentiality
O Traffic flow confidentiality (limited)

O An IPv6 standard compliant implementation must support
IPsec.

Insecured Messages vs.
Secured Messages

IP Spoofing
Session hijacking

Man-in-the-middle

Eavesdropping
Message modification

IPHdr Payload

IPHdr

Fields

Source

IPAdd

Dest

IPAdd

TCP

Hdr

Appl

Hdr

Appl

Payload

Tunnel mode:
the whole package is being
encapsulated
in a new package

IPHdr Payload

Neuer

IPHdr

IPSec

Hd

IPHdr Payload IPSec

Trailerencrypted

Transport mode (less expensive)
new IPSec Header (+ evtl Trailer)
provides somewhat less security

IPSec

Hd

IPHdr IPSec

Trailer

Payload

encrypted

Use of IPSec: Tunnel Mode

Secured messages
in an insecure
environment

Neuer
IPHdr

IPSec
Hd

IPHdr Payload IPSec
Trailerencrypted

Insecured messages
in an secure
environment

IPHdr Payload

IPHdr Payload

Why IPSec?
O Users want a secure, private network by

O disallowing communication to untrusted sites,
O encrypting packets that leave a site,
O authenticating packets that enter a site.

O By implementing security at the IP level, all distributed applications can be secured
(including many security-ignorant, legacy applications).

O Typically, the following threats are prevented:
O Impersonation (IP Spoofing);
O Session hijacking;
O Man-in-the-middle Attacks;
O Injecting or re-ordering of IP packets
O Eavesdropping;
O Message modification

Tunnel Mode
Tunnel Mode
O Tunnel mode has an

“outer IP header” and
“inner IP header”

O AH protects part of
the outer header as well

O Authentication is between remote host
and firewall (or Security Gateway), or
between two firewalls

O User has access to entire internal
network (VPN)

IPHdr Payload

Neuer

IPHdr

IPSec

Hd

IPHdr Payload IPSec

Trailerencrypted

Firewall /

Security Gateway

Corporate

Network

Roaming
User

Internet

Site A Site B
Internet

IPsec Tunnel

IPsec Tunnel

Transport vs. Tunnel Mode
Transport Mode

O no additional header to the IP packet.
O Authentication Header (AH) offers no

confidentiality protection but protects
parts of the IP header.

O Encapsulating Security Payload (ESP)
provides confidentiality protection.

O Transport mode must be host to host
O adequate for upper layer protocols
O Gateways cannot handle

fragmentation or multiple routes
O Hosts share a secret key

IPSec

Hd

IPHdr IPSec

Trailer

Payload
encrypted

IPSec SA
O A Security Association (SA) is a data structure. The SA provides the

necessary parameters to secure data. SAs can be established manually or
dynamically (e.g. IKE).

O An IPsec SA is uniquely identified by:
O Security Parameter Index, SPI (32 bit)
O Destination IP Address
O Protocol (AH or ESP)

O IPsec SAs can support:
O Transport mode
O Tunnel mode

How to establish IPSec
Security Associations?

O Default Key Management Protocol:
The Internet Key Exchange Protocol (IKE)

O Alternatives:
O Kerberized Internet Negotiation of Keys (KINK)

(see http://www.ietf.org/html.charters/kink-charter.html)
O IKEv2 (SON-of-IKE)
O Host Identity Payload (HIP)

(http://homebase.htt-consult.com/HIP.html;
http://homebase.htt-consult.com/draft-moskowitz-hip-05.txt)
O HIP adds new namespace and provides a protocol for

IPsec ESP SA establishment – not fully conformant to IPsec

http://www.ietf.org/html.charters/kink-charter.html)
http://homebase.htt-consult.com/HIP.html;
http://homebase.htt-consult.com/draft-moskowitz-hip-05.txt)

Internet Key Exchange
(IKE)

O ISAKMP Phases and Oakley Modes
O Phase 1 establishes an ISAKMP SA

O Main Mode or Aggressive Mode
O Phase 2 uses the ISAKMP SA to establish

other SAs
O Quick Mode
O New Group Mode

O Authentication with
O Signatures
O Public key encryption

O Two versions
O Based on ability to decrypt, extract a nonce, and

compute a hash
O Pre-shared keys

O Four of the five Oakley groups

AggressiveMain

New Group

Quick

No SA

Ph 1

Ph 2

IKE states (simplified)
modes and phases

Diffie-Hellman

k = Yx mod p = (gx)y mod p = (gy)x mod p = Xy mod p =k

The parameters g and p are typically known to all communication partners.

choose g,p
generate x
compute

X=gx mod p

X [,g,p]

generate y
compute
Y=gy mod pY

A B

Denial of Service
(Flodding)

choose g,p
generate

random numbers:
Xi , i =1.. n

Xi [,g,p]

generate yi
compute Yi = gyi (p)Yi

A B

DOS:
•Exponentiation: computationally expensive
•B: Memory allocation
•A: IP spoofing to prevent traceability.

Dos Protection (Cookies)

X=gx mod p CA, CB, X [,g,p]

Y=gy mod pCA, CB, Y

A B
choose CA

CA

choose CB
CB

Return routability proof:
A has to have seen CB to send the next msg
If A spoofs Addi it has to sit on path Addi --B

Close to Addi : not many active addresses
Close to B

IKE: Cookies

If A uses repeatedly same Address:
Same cookie: B discards
Different cookies: A must wait

Problem remains:
Unauthenticated key-exchange:

man-in-the-middle

X=gx mod p CA, CB, X [,g,p]

Y=gy mod pCA, CB, Y

A B
choose CA

CA

choose CB
CB

Authenticated Key Exchange

A B

Y=gy mod pCA, CB, Y

X=gx mod p CA, CB, X [,g,p]

choose CA
CA

choose CB
CB

CA, CB, {IDA, …}PSKey,k

CA, CB, {IDB, …}PSKey,k

If A and B share a key PSKey then they may use it, together with k
(the D-H result) to encrypt and authenticate the ID (and other param).

Main Mode for shared key:
Negotiation, Key Derivation

A B

CA, CB, X [,g,p], NA

CA, ISAA

CA, CB, Y, NB

CB, ISAB

CA, CB, {IDA}PSKey,k

CA, CB, {IDB}PSKey,k

SKey = hPSKey(NA | NB)

{IDA}PSKey,k = (IDA | HashA)

ISAA, ISAB are ISAKMP SA Data, used by IKE to negotiate:
encryption algorithm
hash algorithm
authentication method

The negotiated parameters pertain only to the ISAKMP SA
and not to any SA that ISAKMP may be negotiating
on behalf of other services.

SKeyd = hSKey(k | CA | CB | 0)

SKeye = hSKey(SKeyd | k | CA | CB | 2)
SKeya = hSKey(SKeyd | k | CA | CB | 1)

HashA = hSKeya(X | Y | CA | CB | ISAA | IDA)

IKE (5): Key Derivation

Properties:
•IKE uses a key derivation procedure without a hierarchy.
•Key derivation provides key material of arbitrary length for the individual keys
(encryption keys, integrity keys, IVs, etc. for different directions).
•The same key derivation routine is used to create an ISAKMP and an IPsec SA.

PRF
Parameters

Layer 0

T1 T2 Tn

T1 T2 Tn|| || ||...Derived Key DK :=

KeyKeyKey

PRFPRF

Internet Key Exchange
(IKE) Summary (1/2)

O Phase I
O The two peers establish a secure channel for further

communication by negotiating ISAKMP SAs.

O Phase II
O Protected by the SA negotiated in Phase I, the peers

negotiate SAs that can be used to protect real
communication; that is, the IPsec SA.

Internet Key Exchange
(IKE) Summary (2/2)

O IKE defines two Phase I modes:
O MAIN MODE gives authenticated key exchange with identity protection.
O AGRESSIVE MODE gives quicker authenticated key exchange without

identity protection.

O For Phase I, IKE defines (for main and aggressive modes) four different
authentication methods:

O 1. authentication with digital signatures;
O 2. authentication with public key encryption;
O 3. authentication with a revised mode of public key encryption; and
O 4. authentication with a pre-shared key.

IKEv2 – What’s new? (1/2)

O Number of authentication modes reduced : Only one
public key based and a pre-shared secret based method

O Establishes two types of SAs (IKE-SA and Child-SAs)
O User identity confidentiality supported

O Active protection for responder
O Passive protection for initiator

O Number of roundtrips are reduced (piggy-packing SA
establishing during initial IKE exchange)

O Better (optional) DoS protection
O NAT handling covered in the core document

IKEv2 – What’s new? (2/2)

O Legacy authentication and IPSRA results have been
added to the core document.
This allows OTP and other password based
authentication mechanisms to be used

O To support legacy authentication a two-step
authentication procedure is used.

O Traffic Selector negotiation improved
O IPComp still supported
O Configuration exchange included which allows clients to

learn configuration parameters similar to those provided
by DHCP.

O EC-groups supported

IPsec: Firewall to Firewall
O Implement VPNs over the Internet.
O Deployment already in progress; may some day largely

replace private lines.
O Caution: still vulnerable to denial of service attacks.

IPsec: Host to Firewall
O Primary use: telecommuters dialing in.
O Also usable for joint venture partners, clients, customers,

etc.
O But today’s firewalls grant permissions based on IP

addresses; they should use certificate names.

IPsec: Host to Host
O Can we manage that many certificates?
O Can servers afford it?
O Can today’s hosts protect their keys?

Limits to IPsec
O Encryption is not authentication; we must still control

access.
O Firewalls can’t peek inside encrypted packets

O Traffic engineers want to look inside packets, too.
O New techniques for handling unusual links -- satellite

hops, wireless LANs, constant bit rate ATM, etc. -- require
examining, replaying, and tinkering with packets.

O NAT boxes incompatible with end-to-end IPsec.
O Use key recovery technology?

IPsec: IP security
O Issues for IKE update (only minor corrections):

O NAT/Firewall traversal
O SCTP

O Proposals for IKEv2 features/simplifications (new version):
O remote access
O dead-peer detection
O client puzzles for DoS protection
O remove most of the authentication methods
O remove perfect forward secrecy
O only one phase
O backwards compatibility
O …

O Much discussion and several sets of proposals related to IKEv2

Network Access ExampleNAS

Password =? Pwd(ID)
Auth-Ack / Auth-Nak

User

Generate random
Challenge

PAP

CHAP

(ID, response) response = h(Challenge, Pwd(ID)
Auth-Ack / Auth-Nak

Authenticate-Request
(ID, Password)

User

Server

Random number

Shared
secret

Shared
secret

h h

=?

Challenge

Response

Wireless Environments
O Traditional network access procedures are not well suited

for wireless environments.

O Hence wireless network have to use different mechanism.

O What about the security of IEEE 802.11?

IEEE 802.11 BackgroundO WEP (Wired Equivalent Privacy)
O Goal was: protection equivalent to the protection granted by wired LAN
O Secret key is shared between AP and all stations (40 or 104 Bit)
O Authentication based on Chall/Resp, but not mandatory
O No key distribution mechanisms
O WEP was developed behind closed doors

O as opposed to widespread practice today
O Link layer security

O WEP key consists of Initialisation Vector (IV) concatenated with shared key
O IV is 24 Bit long, no rules about usage
O Encryption is based on RC4 (a stream cipher)

O Generates an "endless" key stream
O Key stream is bit-wise XORed with plaintext
O General Rule: never use key stream twice, but: 24 Bit revolves quickly

Wireless Equivalence Privacy
(WEP) Authentication

Challenge
(Nonce)

Response (Nonce RC4 encrypted
under shared key)

MN APShared secret distributed out of
band

Decrypted nonce OK?

802.11 Authentication Summary:

• Authentication key distributed out-of-band

• Access Point generates a “randomly generated” challenge

• Station encrypts challenge using pre-shared secret

WEP Encryption

Secret Key

Initialization
Vector (IV)

Plaintext PDU
Data

seed
| | Key Sequence

CRC-32

Integrity Check
Value (ICV)

RC4
PRNG

| |

Ciphertext

IV

Message



WEP in brief:Sender and receiver share a secret key k.

Recipient:
Use the transmitted iv and k to generate K = rc4(iv,k)
<m',c'> := C  K =ifOK= (M  K)  K = M
 If c' = c(m'), accept m' as the message transmitted

m

To transmit m:

c(m)

Compute a checksum c(m), append to m:
M = (m | c(m))

K (keystream)

Pick iv, and generate a keystream
K := rc4(iv,k) iv C (ciphertext)

ciphertext = C := M  K
Transmit (iv | ciphertext)

Attacks involving keystream
reuse (collision)

If m1 and m2 are both encrypted with K,
 C1  C2 = m1  K  m2  K

= m1  m2
 intruder knows  of two plaintexts!

Pattern recognition methods:
know m1  m2  recover m1, m2.

K = rc4(iv,k).
k changes rarely and shared by all users
Same iv  same K  collision
iv cleartext  intruder can tell when collision happens.

There are 2^24, (16 million) possible values of iv.
50% chance of collision after only 4823 packets!
Cards reset iv to 0 on each activation (then iv++): low iv

values get reused often

m c(m)

K (keystream)

iv C (ciphertext)

Decryption Dictionaries
O pings, mail  intruder knows one pair ciphertext and the

plaintext for some iv.
O C := M  K  he knows K = M  C .

Note that he does not learn the value of the shared secret k.

O He stores (iv, K) in a table (dictionary).
O This table is 1500 * 2^24 bytes = 24 GB
O The next time he sees a packet with iv in the table, he can

just look up the K and calculate M = C  K

O size of the table depends only on the number of different iv
you see.

O It doesn't matter if you're using 40-bit keys or 104-bit keys
O If the cards reset iv to 0, the dictionary will be small!

Message “Authentication” in
WEP

O The checksum algorithm used is CRC-32
O CRC's detect random errors; useless against malicious

errors:
OIt is independent of k and iv
OIt is linear: c(m  D) = c(m)  c(D)

Message Modification

O Assume IV and C are known to intruder .
O Intruder wants the

receiver to accept fake message
F = m  d
for some chosen d
($$ in a funds transfer)

O D := (d | c(d)), then (C  D) = K  (M  D)
O C' := C  D transmit (iv,C') to the receiver.
O Receiver checks:

C'  K = C  D  K = M  D = <F, c(F)>
O OK!

m c(m)

K (keystream)

iv C (ciphertext)

Message Injection
Assume: Intruder

knows a plaintext,
and corresponding encryption
(pings or spam provide this)

The encrypted packet is (iv,C),
plaintext is (m | c(m)),
intruder computes
K = C  (m | c(m)).

Now he can take any message F, compute c(F), and
compute
C' = <F,c(F)>  K .

Transmits (iv,C').

m c(m)

K (keystream)

iv C (ciphertext)

Message Injection
O Note that we only used that the CRC does

not depend on the key. The attack would
work just as well if the CRC were replaced
by, say, SHA-1.

The Authentication
Protocol

O AP sends challenge
O The client sends back the challenge, WEP-encrypted with

the shared secret k
O AP checks if the challenge is correctly encrypted

O Intruder: has now both the plaintext and the ciphertext of
this challenge!

Authentication Spoofing
O Once intruder sees a

challenge/response pair for a
given key k, he can extract iv and K .

O Now he connects to the
network himself:

O AP sends
a challenge m' to intruder

O Intruder replies with iv, <m',c(m')>  K
O This is in fact the correct response, so AP accepts intruder
O Without knowing k

m c(m)

K (keystream)

iv C (ciphertext)

Message Decryption

Intruder can trick AP into decrypting the packet, and telling
him the result :

O Double-encryption
O IP Redirection
O Reaction attacks

m c(m)

K (keystream)

iv C (ciphertext)

Double-encryption
Encryption = Decryption, same key. If intruder wants a

certain packet decrypted, he can:
Join the network (authentication spoofing)
Use a second Internet connection to send the packet to his

laptop over the wireless network
AP will encrypt this packet a second time
Need right timing: access point uses the same IV

Easy if access point is using sequential IV's

IP Redirection
Intruder joins the network
He takes the packet to be decrypted, modifies it so that the

IP address of a machine he controls is the destination
Sends modified packet to AP, which will decrypt it and send

the plaintext to intruder 's machine
Issue: get the IP header checksum correct, easy to solve
Firewall: not too difficult

Reaction Attacks
Assume the packet to be decrypted is a TCP packet
Do not need connection to the Internet
Use the fact: TCP checksum invalid => silently dropped
But if the TCP checksum on the modified packet is correct,

ACK
We can iteratively modify a packet and check if the TCP

checksum valid
Possible to make the TCP checksum valid or invalid exactly

when any given bit of the plaintext message is 0 or 1
So each time we check the reaction of the recipient to a

modified packet, we learn one more bit of the plaintext

Attacking the WEP
Algorithm

O Passive attacks
O Eavesdropping packets with same IV  yields XOR of two (or more)

plaintexts and allows conclusions about plaintext
O Eavesdropping packets with "special IVs"  allows to reconstruct the

WEP key (=> Airsnort attack)
O Active attacks

O Injecting know plaintext packets from the Internet
(packet sent with selected IV for a known key stream) 
O Allows to decrypt all packets with same IV
O Allows to encrypt own plaintext with same IV
O Allows to built a lookup table for many (all) IVs (space required for all IVs

~15GB)
O Authentication possible without knowledge of the key

(Known plaintext attack - challenge / response)

IEEE 802.11 Security
weaknesses

O The properties provided by IEEE 802.11 do not meet today’s security
objectives

O The missing user identification and the non-existing appropriate key
management makes it difficult to detect unusual activity.

O Authentication is based on the MAC address and not on the user identity.
O Mutual authentication not provided (false base-station attacks possible)
O No keyed message digest used
O 40-bit RC4 key length too short for today's application (because of US export

restriction)
O Too short Initialization Vector (24 bits)
O Known (and partially known) plain-text attacks possible

Current Status of WLAN
Security

O 802.11 Task Group i deals with enhanced security for 802.11 WLANs
O Standard expected for end 2003
O Short-term solution: TKIP (Temporal Key Integrity Protocol)

O Idea: reuse existing hardware by software-/firmware-update only
O 128 bit key, 48 bit Extended IV, IV sequencing rules (~10^10 years)
O Key mixing function (creates new seed for RC4 for each packet)
O New Message Integrity Code

O Authentication and key management: 802.1X "Port-based access control"
O Mutual authentication between STA and backend authentication server
O Establishment of individual per-session keys between STA and AP

O Long-term solution: AES-CCMP (AES-Counter-Mode/CBC-MAC protocol)
O Robust security solution
O Requires new hardware

TKIP: IEEE 802.11i Short-
Term SolutionO Temporal Key Integrity Protocol (TKIP) constraints:

O Allow deployed systems to be software or firmware
upgradeable (most systems implement WEP in HW);

O Allow the current WEP hardware implementation to remain
unchanged

O Minimize performance degradation imposed by the fixes.
O TKIP wraps WEP in three new elements:

O A message integrity code (MIC), called Michael, to defeat
forgeries;

O A packet sequencing discipline, to defeat replay attacks;
O A per-packet key mixing function, to prevent FMS attacks.

O TKIP mandates fresh keys. The IEEE 802.1X key
management scheme provides fresh keys.

WEP Security: Lessons
O WEP designers selected well-regarded algorithms, such

as RC4
O But used them in insecure ways
O The lesson is that security protocol design is very difficult

O best performed with an abundance of caution,
O supported by experienced cryptographers and security

protocol designers
O and tools!

IEEE 802.1X Security
Properties

O Support flexible security framework based on EAP (RFC
2284) and RADIUS

O Enable plug-in of new authentication, key management
methods without changing NIC or Access Point

O Enables customers to choose their own security solution
O Can implement the latest, most sophisticated

authentication and key management techniques with
modest hardware

O Enables rapid response to security issues
O Per-session key distribution

IEEE 802.1X Security
Properties

O Enables use of Kerberos v5 for authentication
O Allows fine-grain authorization:

O Authorization can include bandwidth limits, Virtual LAN,
QoS, etc.

O User-based identification
O Identification based on NAI (Network Access Identifier, RFC

2486)
O Allows cross-realm access in public places

O Receives wide support in the industry
O 3Com, Intel, HP, MERIT, Microsoft, Nortel, Cisco

EAP Architecture

The Extensible Authentication Protocol

PPP 802.
*

SIP / HTTP

ICMP

TLS OTP GSS-API SRP
UMTS
AKA

Kerberos V5 IAKERB, SPNEGO, SPKM, SRPGM, …

Link Layer

Radius/
Diameter

UDPTransport Layer

Application Layer

IEEE 802.1X EAP/Radius
Conversation

EAPOL-Start

EAP-Response/Identity

Radius-Access-Challenge

EAP-Response

Access blocked
Port connect

Radius-Access-Accept

EAP-Request/Identity

EAP-Request

EAP-Success

Radius-Access-Request

Radius-Access-Request

RADIUSEAPOL

Purpose of Digital
Certificates

O Scalability
O Trusted validation of parties
O Transmission and storage of public keys can be insecure
O Can provide permissions (Authorizations)

O X.509 is part of the ITU-T Directory series of
recommendations (= ISO/IEC 9594).

The minimal Public Key
Certificate

A data structure that binds
a subject
a public key

PKCertificate :: =

{

Subject Name
Subject Public Key

Signature

}

Binding done by trusted CA:
verifies the subject’s
identity
signs the certificate

X.509 Public Key Cert V.1
PKCertificate :: =

{

Version = 0 (“1”)
Serial Number
Signature AlgorithmID
Issuer
Validity (Lifetime)

Not Before
Not After

Subject Name
Subject Public Key

AlgorithmID
Key value

Signature

}

AlgorithmID is a pair:
encrypt + hash (+ opt. parameters)

Version 1 from 1988
To uniquely identify cert. Never reused

X.500 DN of CA, e.g., {C=de, S=..,
O=Comp}

YYMMDD; HHMM{SS}: “Y2K problem”

Format of certificate is ASN.1
DER (Direct Encoding Rules) produces octets for transmission

(Single) Certificate Validation
O Check the Certificate Integrity
O Validity Period
O Key Usage and Applicability according to policies
O Certificate Status

How do I Verify this
Certificate?

Alice wants me to believe that she owns
a certain public key PK.

Issuer Subject NameSubject PubKey Signature

AliceCA1 of CA1PK

For that, she presents me a Certificate,
issued by her company “CA1”.

But who is that company, “CA1”?
Is CA1 trustworthy?
Is “Signature of CA1” really the signature
of CA1?

Path Construction and Path
Discovery

Issuer Subject Name Subject PubKey Signature

AliceCA1 of CA1

Issuer Subject Name Subject PubKey Signature

CA1CA2 of CA2

Issuer Subject Name Subject PubKey Signature

CA2CAT of CAT

Issuer Subject Name Subject PubKey Signature

CATCAT of CAT

Easy, in hierarchical PKIs, If not: may need construct several paths

CA Hierarchy and Cross-
Certification

Cross Certificate

Alice

Certificate Authority

Certificate User

Certificate CA

CACACA

CA CA

CACA

Verify the Certificate: Path
Validation

Issuer Subject Name Subject PubKey Signature

AliceCA1 of CA1

Issuer Subject Name Subject PubKey Signature

CA1CA2 of CA2

Issuer Subject Name Subject PubKey Signature

CA2CAT of CAT

CATCAT of CAT

Issuer Subject Name Subject PubKey Signature

Relying on a trusted/local copy of the root certificate:
prove by induction : Issuer owns the claimed PubKey,

CA2 , CA1 trustworthy.
Check Lifetime, Policies and Revocation Lists

X.509 Public Key Cert V.2
PKCertificate :: =

{

Version = 1
Serial Number
Signature AlgorithmID
Issuer
Validity (Lifetime)

Not Before
Not After

Subject Name
Subject Public Key

AlgorithmID
Key value

Issuer Unique ID
Subject Unique ID

Signature

}

Version 2 from 1992

To uniquely identify Issuer

To uniquely identify Subject

There may be several “Trustme-Cert
Inc.” worldwide,

or several “Bob Hope” in our company

If “Bob Hope” leaves our company and a
new “Bob Hope” is hired,

how to make sure that the new one does
not inherit the old authorizations?

Nobody uses that. There are better solutions.

X.509 Public Key Cert V.3
PKCertificate :: =

{
Version = 2
Serial Number
Signature AlgorithmID
Issuer
Validity (Lifetime)

Not Before
Not After

Subject Name
Subject Public Key

AlgorithmID
Key value

Extensions
Extension1
Extension2

Signature}

Version 3 from 1998

UCTTime: YYMMDD: If YY < 50 then add
2000

else add 1900
OR

Generalized Time: YYYYMMDD

Standard extensions for: KeyID,
Key usage intention / restriction,

subject/issuer alternate names or
attributes

(DNS name, email addr., URL, IP addr.)
policies

certification path
Private Extensions also possible

Key Usage
KeyUsage ::= BIT STRING {

digitalSignature (0),

nonRepudiation (1),

keyEncipherment (2),

dataEncipherment (3),

keyAgreement (4),

keyCertSign (5),

cRLSign (6),

encipherOnly (7),

decipherOnly (8) }

X.509 Public Key
Certificate V.3

PKCertificate :: =

{
Version = 2 (“3”)
Serial Number
Signature AlgorithmID
Issuer
Validity (Lifetime)

Not Before
Not After

Subject Name
Subject Public Key

AlgorithmID
Key value

Extensions
Extension1
Extension2

Signature}

Fields: Type
(critical | non critical)

value

Issuer does not only check your identity,
it also checks what you are allowed

Size of cert (say, in wireless applications)
Do not need all extensions always

More extensions => faster to revocate

Problems:

X.509 Attribute Cert V.1
(current)

AttrCertificate :: =

{
Version = 0 (“1”)
Serial Number
Signature AlgoID
Issuer + IssuerID
Validity (Lifetime)
Subject

Subject Name
or
Base Certificate

Issuer
Serial Nr.

Attributes
Extensions

Signature

}

No field for a public Key

May have different CA from PKCert
different lifetime (shorter)
authorization information
role, etc.

Not (yet?) in wide use

Generalized Time: YYYYMMDD

Other Extensions
O Basic constraints

O Identifies whether the certificate subject is a CA;
O how deep a certification path may exist through that CA.

O Name constraints (only for CA certificates)
O Indicates name space within which all subject names in

subsequent certificates in a certification path must be
located.

Certificate management
O Certificate management covers:

O the responsibilities and actions of the Certification Authority,
O the ‘certification process’,
O distribution and use of certificates,
O certification paths,
O certificate revocation.

O Two parallel sets of standards cover interactions between users and a CA:
O IETF RFCs 2510/2511
O ISO/IEC 15945.

O IETF leads the way - ISO/IEC has adopted proposals of RFCs.

The Certification Authority
O The CA is responsible for:

O identifying entities before certificate generation
O ensuring the quality of its own key pair,
O keeping its private key secret.

O The CA, before generating a certificate, checks that a
user
O knows the corresponding private key to its claimed public

key.

O On keeping those commitments depends the notion of
trust

What is an End Entity?O X.509v3 certificates are used by protocols such as
S/MIME, TLS and IKE, when authentication requires
public keys.
(End Entity = Natural Person)

O When two routers or security gateways or servers, etc.
wish to communicate, they exchange certificates to prove
their identity
O thus removing the need to manually exchange public keys

or shared keys with each peer
O End Entity = Router, Printer, Gateway, Server, Device
O The certificate provides the equivalent of a digital ID card to

each device.

Basic model: basic protocols
-- Simplified User‘s View

certification
revocation

request

"out-of-band„
publication

"out-of-
band„

loading

cert.
publish

CRL
publish

ID: 12 34 56 78Company XYZ

Name
ABCDEFG

Smart card
stores keys Certification

Authority

Directory server
stores public keys as

X.509 certificates

Certification
Authority

Registration
Authority

cross-certification
cross-certificate

update

initial registration
certification

key pair recovery
certificate update
key
enrolment

key
enrolment

Recall: Purpose of Digital
CertificatesO Scalability: get public keys only when really needed

O Trusted validation of parties: by induction, I believe party
is who he claims to be (erroneously: "trust is transitive")

O Transmission and storage of public keys can be insecure:
replace storing securely many keys with:
O store insecurely many certificates
O store securely the root certificate
O store securely the private key

O Can provide permissions (Authorizations): later

Basic model: basic protocols
-- Simplified User‘s View

ID: 12 34 56 78Company XYZ

Name
ABCDEFG

Secured applications client e.g.
 Encrypted e-mail
 Encrypted web-access
 E-commerce using certificates
 VPN authentication using certificates

Secured application servers, e.g.
 Encrypted e-mail
 Encrypted web-access
 E-commerce using certificates
 VPN authentication using certificates

Need all:
Secure

networks,
services,
applications, and
devices

PKIX and the IETFO Handles interoperability issues
O Profiles for X.509 v3 certificates to be used by security

protocols like IPSec, new extensions
O Operational protocols for certificate and CRL distribution,

e.g. LDAP, HTTP, FTP
O Management protocols for the support of interactions

between a CA and client system,
i.e. register, revoke via standard messages and exchange
protocols (CRMF, CMMF, CMP, CMC)

Reasons for Revocation
O Compromise of subject’s private key
O Change in subject name
O Change in Authorizations in Cert
O Change of subject’s affiliation
O Violation of CAs policies
O Compromise of CAs private key
O Termination of entity, etc.

Need to inform all users by some
means.
Note: Revocation before expiry!

Certificate Revocation List,
Version 2 (current)

CRL :: =

{

Version = 1 (“2”)
Serial Number
Signature AlgoID
Issuer
Date (+Time)
NextUpdate (Time)
Revoked Certificates

Certificate
Serial Nr.

RevocationDate
Extensions

CRL Extensions

Signature

}Stored on CA,
directory service or

OSCP (Online Cert Status Prot) server

Time-stamped
and frequently updated

Rate may vary according to security
of the transaction (say, 4 times a day)

Must be scheduled regardless of
change in status

Signed by CA

• List of revoked
certificate’s serial numbers

Distribution of CRLs

Push
Broadcast
Reliable transport
Bandwidth Intensive

Who needs them?

CRL :: =

{

Version = 1 (“2”)
Serial Number
Signature AlgoID
Issuer
Date (+Time)
NextUpdate (Time)
Revoked Certificates

Certificate
Serial Nr.

RevocationDate
Extensions

CRL Extensions

Signature

}

On-line status checking
Client initiated
On-line query
Info available 24 x 7

CRL :: =

{

Version = 1 (“2”)
Serial Number
Signature AlgoID
Issuer
Date (+Time)
NextUpdate (Time)
Revoked Certificates

Certificate
Serial Nr.

RevocationDate
Extensions

CRL Extensions

Signature

}

?

CRL :: =

{

Version = 1 (“2”)
Serial Number
Signature AlgoID
Issuer
Date (+Time)
NextUpdate (Time)
Revoked Certificates

Certificate
Serial Nr.

RevocationDate
Extensions

CRL Extensions

Signature

}

Polling
Client polls according to

advertised interval
CA or directory server can be

polled
Black hole between revocation

and next scheduled update

Problems
O PDAs, Cellular Phones, Laptops:

O Intermittent Network Access
O Low communication Bandwidth
O Low Computational Power

O Ideally:
O Connect for a short time, download messages, SW, etc
O Validate Certificates
O Proceed with off-line operations
O But:
O Need Public Keys
O Path Discovery, Verification

How to check revocation
status?

O Options from PKIX
O OCSP (Online certificate status protocol)
O OCSP with extensions:

O Delegated Path Validation (DPV)
O Delegated Path Discovery (DPD)

O DPD or DPV are also possible without OCSP
O Simple Certificate Verification Protocol (SCVP)

Online certificate status
protocol

O OCSP, RFC 2560, enables certificate status to be queried.
O The protocol specifies data exchanged between entity checking

certificate status and the T3P providing that status.
O OCSP may provide more timely revocation information than is possible with

CRLs.
O Entity issues status request to T3P and suspends acceptance of certificate

until T3P gives response. (Some seconds, not real-time)
O Client sends list of cert ids to a responder
O Responder returns status for each:

O Good (simply means that responder has no record of the cert’s
revocation)

O Revoked
O Unknown (responder has no knowledge of the cert)

O (Version 2 fixes the way cert ids are sent)

DPD: Delegated Path
Discovery

O For clients that don’t want to do build a complete cert chain
O Memory or bandwidth constraints

O Client request parameters:
O On the path construction

O Trust anchors
O Name constraints
O Name forms

O Validation Parameters
O Type of revocation status info (CRL or OCSP)

O Responder builds a chain for the client:
O Client sends cert id
O Responder builds and returns chain - does not validate

O Why DPD but no DPV? Client does not trust the responder

DPV: Delegated Path
Validation

O For clients that don’t want to do validate a complete cert
chain
O CPU, memory or bandwidth constraints
O Central policy management

O Responder builds chain (but does not return) and gives
status of cert sent as for OCSP

O Client can specify trust points through which chain must
be built

O Client completely trusts the responder, but
O Can use signed response for non-revocation

O Issue: trust delegation

SCVP
O The amount that the responder does can be varied

O Client can offload all processing to the SCVP server
O Client can just use SCVP for chain building

O Client sends up complete certs and what it expects:
O TypesOfCheck

O tells the server what types of checking the client expects the
server to perform on the on the query item(s).

O WantBack
O tells the server what the client wants to know about the query

item(s).

TLS Protocol
O TLS itself has two layers:

O TLS Record protocol
O Built on top of reliable transport, such as TCP
O Encapsulates higher-level protocols, such as TLS Handshake

protocol
O TLS Handshake provides for

O Negotiation of encryption algorithm and keys
O Mutual authentication between client and server

O Other features of TLS
O This is a stateful protocol
O Compression is done via some negotiated technique

TLS Sub-Protocols

TLS

Application

TCP

Handshake

Alert CCS

Record

TLS
O Secure message passing protocol
O Developed by Netscape, now an IETF RFC (TLS: Jan

'99)
O Protocol for using one or two public/private keys

O to authenticate a sever to a client
O and by requiring a client key to authenticates the client to

the server
O establish a shared symetric key (the session key)
O uses the session key to encypt all data over the secure

channel
O Gives you authentication, message integrity and

confidentiality
O Everything except authorizaton

TLS Handshake
O Negotiate the cipher suite
O Establish a shared session key
O Authenticate the server (optional)
O Authenticate the client (optional)
O Authenticate previously exhanged data

TLS Overview

O A sends to B a session identifier and nonce.
O B sends another nonce and his public-key certificate (there are other

possibilities).
O A generates a pre-master-secret (= 48-byte random string).

A sends it to B encrypted with his public key and optionally a signed
message to authenticate herself.

O Both parties calculate the master-secret M from the nonces and the pre-
master-secret, using a secure pseudo-random-number function (PRF). They
calculate session keys and MAC secrets from the nonces and master-secret.
Each session involves a pair of symmetric keys; A encrypts using one and B
encrypts using the other. Similarly, A and B protect message integrity using
separate MAC secrets.

TLS Overview
O Before sending application data, both parties exchange

finished messages to confirm all details of HAndshake
and to check that cleartext parts of messages have not
been altered.

O A full handshake is not always necessary. At some later
time, A can resume a session by quoting an old session
identifier along with a fresh nonce. If B is willing to
resume the designated session, then he replies with a
fresh nonce. Both parties compute fresh session keys
from these nonces and the stored master-secret, M.

O Both sides confirm this shorter run using finished
messages.

TLS Handshake Overview
O Ciphers:

O RSA, DSS, and DH
O Elliptic curves, Kerberos, and Fortezza
O RC4, DES, 3DES, IDEA

O RC4 is the default encryption algorithm
O Lots of old 40-bit software around
O Very weak.

O HMAC MD5 or HMAC SHA-1 are the common MAC

The TLS Handshake
Protocol

hello request B  A : ()
sent by the server at any time, simple notification that the client

should begin the negotiation process anew by sending a client
hello

This message should not be included in the message hashes which
are used in the finished messages and the certificate verify
message.

client hello A  B : A; Na; Sid; Pa

nonce Na, called client random,
session identifier Sid. The model makes no assumptions

about the structure of agent names such as A and B.
Pa is A's set of preferences for encryption and

compression;
both parties can detect if Pa has been altered during
transmission (using the message hashes in finished
messages and the certificate verify message).

The TLS Handshake
Protocol

server hello B  A : Nb; Sid; Pb

nonce Nb (called server random).
Same session identifier
Pb his cryptographic chice, selected from Pa.

server certificate B  A : certificate(B;Kb)

The server's public key, Kb, in a cert signed by a trusted CA

Server key exchange message B  A : gy

sent by the server only when the server certificate message does
not contain enough data to allow the client to send a PMS. This
message (may) contain the DH parameter of B "gy", for
calculating the PMS. (Another variant, not discussed here)

The TLS Handshake
Protocol

certificate request B  A : certificate_types,
certificate_authorities

server hello done B  A : ()
client certificate* A  B : certificate(A; Ka)
either client key exchange A  B : gx

or encrypted premaster secret A  B : {PMS}Kb
certificate verify* A  B : SigKa (Hash {Nb; B;

PMS})

Optional messages are starred (*)
In certificate verify, A authenticates herself to B by signing HAsh

of some relevant messages to the current session.
Paulson: Important only to hash Nb, B and PMS.

The TLS Handshake
ProtocolM = PRF(pre_master_secret, "master secret",

Client_random + Server_random)

Both parties compute the master-secret M from PMS, Na and Nb

finished A  B : PRF(M, "client finished" ,
hash(handshake_messages))

finished B  A : PRF(M, "server finished" ,
hash(handshake_messages))

The TLS Handshake Protocol
O According to the TLS specification, client hello does not

mention the client's name. But server needs to know
where the request comes from; in practice gets this
information from TCP. That it is not protected and could
be altered by an intruder.

O The master secret is hashed into a sequence of bytes,
which are assigned to the MAC secrets, keys, and non-
export IVs required by the current connection state:

O a client write MAC secret,
O a server write MAC secret,
O a client write key,
O a server write key,
O a client write IV, and
O a server write IV

The TLS Handshake
Protocol

O The symmetric client write key is intended for client
encryption, while server write key is for server encryption;
each party decrypts using the other's key.

O Once a party has received the other's finished message
and compared it with her own, she is assured that both
sides agree on all critical parameters, including M and the
preferences Pa and Pb.
Only now she may begin sending confidential data.

The TLS Handshake
Protocol

O The TLS specification erroneously states that she can
send data immediately after sending her own finished
message, before confirming these parameters;
O An attacker may have changed the preferences to request

weak encryption.
O This is exactly the cipher-suite rollback attack, which the

finished messages are intended to prevent.
O TLS corrects this error.

The TLS Handshake
Protocol

O For session resumption, the hello messages are the
same.

O After checking that the session identifier is recent enough,
the parties exchange finished messages and start
sending application data.

O Each party has to store the session parameters after a
successful handshake and look them up when resuming
a session.

O Session resumption does not involve any new message
types.

Certificates, CAs, Browsers,
and Servers

O Many CAs’ certificates pre-loaded with the browser:
O ATT, VeriSign, …
O Can be viewed in the browser, e.g.,

O Navigator 6: tasks, security and privacy, security manager

O User surfs to https://www.mystockbroker.com/
O Browser connects to port 443, sends nonce and gets

back servers’ cert & nonce

https://www.mystockbroker.com/

Certificates, CAs, Browsers,
and Servers

O Browser verifies cert; encrypts a pre-master secret with
server’s public key
O Process works if everyone is careful

O Some browsers come with 100+ CAs’ certs; easy to mistake the name
O Some CAs may be unreliable
O Pre-master secret may be predictable
O Certificates expire and signatures may not check
O Virus may corrupt either party

O Rest of the communications are protected
O Server asks for password, credit card #, tax ID #, etc.

O Sometimes servers get hacked and all customers’ secrets get published

O And there’s a lot of old “40-bit” software around

Personal Certificates and
Client-Side Authentication

O Clients (browsers) can have certificates too
O CA signs client’s public key
O Obtained from well-known CAs:

O VeriSign, ATT, MCI, …
O Costs and policies vary

O Can be viewed in the browser, e.g.,
O options, security, personal certificates

O Two-way strong security
O No server access to user’s secret
O Good security but not widely used
O Most secure web sites ask client for a simple password (encrypted)
O Worse, most secure Web sites only secure the “payment screen”

TLS Limitations
O In all cases, have to trust other party’s CA

O Usually not even aware of the choice
O How can you trust 115 CAs?

O Password or credit card authentication allows unlimited guessing
O Systems on both sides may get hacked or infiltrated with untrusted code
O For efficiency reasons, most screens are not protected
O Inherent back-end security target

O Many exposures, examples
O No non-repudiation and huge dispute rates

O Netscape introduced “form signing” on navigator 4.04
O Not supported by Explorer

O No convenient “wallet” software

Using TLS
O Warning screen from a secure page:
O https://www.somewheresecure.com

https://www.somewheresecure.com

TLS Architecture

Handshake Alert
Change
Cipher
Spec

Application • The Change Cipher Spec protocol
consists of a single message that
is sent by both the client and
server to notify the receiving
party that subsequent data will
be protected under the newly
negotiated Ciphersuite and keys.

• The Alert protocol specifies the
TLS alert messages.

• The Change Cipher Spec protocol
consists of a single message that
is sent by both the client and
server to notify the receiving
party that subsequent data will
be protected under the newly
negotiated Ciphersuite and keys.

• The Alert protocol specifies the
TLS alert messages.

• The Record Layer provides the encapsulation of the upper layer data.
The data is fragmented, optionally compressed, a MAC is appended,
and data and MAC are encrypted. Each transport connection is
assigned to a unique TLS session.

• The Record Layer provides the encapsulation of the upper layer data.
The data is fragmented, optionally compressed, a MAC is appended,
and data and MAC are encrypted. Each transport connection is
assigned to a unique TLS session.

Record Layer

Reliable Transport

Reliable Transport

Contents
Internet Layers, Basics

Management, Implementation or Design Errors

Designing Correct Protocols: The Avispa contribution

IETF Groups and Activities

Sec Protocols: Kerberos, AAA,

IPsec, IKE, IKEv2, Wlan,

PKI, TLS

High-level Protocol Spec. Language (hlpsl): Syntax,
Semantics, Goals, Examples

Outlook: MobileIP, HIP, Pana

The basic Model: Alice, Bob, Intruder

Well-known in network security world
Alice + Bob want to communicate securely (privately, without

modifications)
Alice and Bob are “roles”
Intruder may intercept, delete, add messages

secure
sender

secure
receiver

channel data, control
messages

data data

Alice Bob

Intruder

Syntax: Roles as trace Predicates

Think of a module or “role” as a formula Alice(n;x,y)

Analogy: think of p(n,x,y) a FOL formula, like (x > y+n)

Alice(n;x,y) is not talking about single values of variables,

(like p does), but about traces (sequences of values).

As you may write ξ sat p(n,x,y) (sat is usually written “ |= ”),

for instance (2,10,4) sat (x > y+n)

You can also write τ sat Alice(n;x,y) for instance

((1,0,0), (1,1,0), (1,1,0), (1,1,8), (1,8,8), …)

sat (x=y=0  □ (x’ ≠ x  y ≤ x’ ≤ y’ +1))

Syntax: Variables,
Predicates

Set of vars V={x,x1,x2,x3,y,y1, …} called state variables
(each of a determined type),
construct a copy of them called primed variables
{x',x1',y', …}

FOL predicates with free vars in V are called state predicates
and predicates with free vars in V united V' are called
transition predicates

st_pred, tr_pred
(x=y=0) is a state predicate

(x’ ≠ x  y ≤ x’ ≤ y’ +1)) is a transition predicate

Syntax: Events, Stuttering
Transition predicates of the form

(t(x) ≠ t(x'))  N(x,x') where x is a tuple of variables
are called events. Events exclude stuttering (x=x')

x'=x+1 is not an event (syntactical criteria) but it excludes
stuttering. It is equivalent to the event
x'≠x  x'=x+1

Note that the disjunction of events is wlog also an event
rewirting:
(t(x) ≠ t(x'))  N(x,x'))  (s(x) ≠ s(x'))  M(x,x'))
((t,s)(x) ≠ (t,s)(x'))  (N  M)(x,x'))

Syntax: TLA Normal Form A TLA formula in normal form is:
… st_pred  □ ((event  tr_pred)  (event  tr_pred) 
…)

Our hlpsl is close to this TLA form

Note: conjunction of TLA normal forms is (wlog) normal form

Conjuction is parallel composition of modules (roles)!

Two types of variables:

flexible variables (state of the system)

rigid variables (parameters, constants, may be instantiated at
some point later)

TLA Example
V={x,y}
Let Prg(x) = (x=0)  □ (x'≠x  x'=x+1)
Then the following traces are in Tr(Prg):

(0,3), (0,4), (0,5), (0,6), (0,7), …
(0,3), (1,4), (2,5), (3,6), (4,7), …
(0,0), (1,1), (2,2), (3,3), (4,4), …
(0,0), (0,1), (1,2), (1,3), (2,4), …

If a TLA program talks about variable x only, it does not say anything about
variable y.

All traces of Prg are generated by the following "symbolic trace":
(0,*), (1,*), (2,*), (3,*), (4,*), …

by:
take a prefix (including all)
introduce any number of x-stuttering steps,
repeat (x0,*) any number of times (even infinite)
replace the do-not-cares "*" by any values of y

hlpsl Example

Prg(x) = (x=0)  □ (x'≠x  x'=x+1)
Using a signal “Trigg”:

Role Prg(Trigg,x) :=
Owns x
Init x = 0
Trans

Trigg  x’ = x +1

The var x is modified only by Prg, but it
may seen outside.

Prg
Trigg

x

TLA Example
V={x,y}
Let Prg(x) = (x=0)  □ (x'≠x  x'=x+1)
Let New(x,y) := Prg(x)  Prg(y)

Exercise: What are the traces of this program?

TLA Example, modelling channels

V={sec:{0,…59} ,min :{0,…59},hr :{0,…11} }
Sec := (sec'≠sec), etc. Events
Clock: = A  B  C
A := (sec = 0)  □ ( Sec  sec’ = sec +1 (mod 60)

 Sec  sec’ = 0  Min)

B := (min = 0)  □ ( Min  min’ = min +1 (mod 60)

 Min  min’ = 0  Hr)

C := (hr = 0)  □ (Hr  hr’ = hr +1 (mod 12))

A B C
Sec

Min Hr
hrminsec

hlspl Example, the clock

Clock: = A  B  C

Role A(Sec,sec,Min) :=

Init sec = 0

Trans Sec  sec’ = sec +1 (mod 60)

Sec  sec’ = 0  Min

A B C
Sec

Min Hr
hrminsec

Implementing the clock with local variables

Who owns the minutes?
Separate Min + min, etc
Redefine Min := v_Min’ ≠v_Min

Role A(Sec,sec,Min) :=

Owns sec, Min

Init sec = 0

Trans Sec  sec’ = sec +1

Sec  sec’ = 0  Min

A = (sec = 0)  □ ( Sec  sec’ = sec +1

 Sec  sec’ = 0  Min
 sec ≠ sec’ = 0  Sec
 Min  Sec  sec’ = 0)

A B C
Sec

Min Hr
hrminsec

Types of Channels

role A (p; v, channels: channel
(dy|secure|ota|…)) :=

…

end role

Basic Roles: Semantics
role Basic_Role (…) :=

owns {θ: Θ}

local {ε}
init Init

accepts Accept

transition

event1  action1

event2  action2

…

end role

Trigg(Basic_Role) := event1  event2  … %% This is also an event!

Init(Basic_Role) := Init
Accept(Basic_Role):= Accept(A)  Accept(B)  Accept
Mod(x,Basic_Role) :=  {eventi | x’ ocurrs in actioni (or in a LHS channel val)}

Step(Basic_Role) := Trigg(Basic_Role)  (event1  action1)  (event2  action2)  ...
TLA(Basic_Role) :=  ε { Init  □ [(event1  action1)  (event2  action2)  ...

 ( _(θΘ) θ‘≠ θ  Mod(θ,Basic_Role))] }

Basic Roles: Semantics
role A (…) :=

owns {θ: Θ}

local {ε}
init Init

accepts Accept

transition

event1  action1

event2  action2

…

end role

Trigg(A) := event1  event2  … %% This is also an event!

Init(A) := Init
Accept(A):= Accept
Mod(x,A) :=  {eventi | x’ ocurrs in actioni (or in a LHS channel val)}

Step(A) := Trigg(A)  (event1  action1)  (event2  action2)  ...
TLA(A) :=  ε { Init  □ [(event1  action1)  (event2  action2)  ...

 ( _(θΘ) θ‘≠ θ  Mod(θ,A))] }

Basic Roles: Semantics
role A (…) :=

owns {θ: Θ}

local {ε}
init Init

accepts Accept

transition

event1  action1

event2  action2

…

end role

Trigg(A) := event1  event2  … %% Also event!

Init(A) := Init

Accept(A):= Accept

Mod(x,A) :=  {eventi | x’ ocurrs in actioni
(or in a LHS channel val)}

Step(A) := Trigg(A) 
(event1  action1)  (event2  action2)  …

TLA(A) :=  ε { Init  □ [

Trigg(A)  Step(A)

 ( _(θΘ) θ‘≠ θ  Mod(θ,A))] }

Note:

Step(A)  (event1  action1)  (event2  action2)  …

TLA(A) =  ε { Init  □ [

(event1  action1)  (event2  action2)  …

 ( _(θΘ) θ‘≠ θ  Mod(θ,A))] }

Semantic of Composed Roles: modular approach

A  B = Composition(A,B):

Parallel, Sequential (+taking ownership, hiding)

IF-Programs  hlpsl-Programs  TLA-Formulas

IF(A) , IF (B)  A , B  TLA(A) , TLA(B)

  

IF(A)  IF (B)  A  B  TLA(A)  TLA(B)

For Parallel composition:

TLA(A)  TLA(B) = TLA(A)  TLA(B)  extra_glue (for ownnership)

Semantic of Composed Roles:
flattening approach

A  B = Composition(A,B):

Parallel, Sequential (+taking ownership, hiding)

flatten: hlpsl-Programs  hlpsl-Programs

For basic roles: flatten(A) = A

For composed roles: flatten(A  B) = arrange(flatten(A),flatten(B))

Composed Roles: Parallel
role Par_Role (parameters; variables, channels) := % Parallel Composition of A and B

owns {θ:Θ}

local {ε}
init Init

accepts Accept

A  B

end role

Trigg(Par_Role) := Trigg(A)  Trigg(B)

Init(Par_Role) := Init(A)  Init(B)  Init

Accept(Par_Role) := Accept(A)  Accept(B)  Accept

Mod(x,Par_Role) := Mod(x,A)  Mod(x,B)

TLA(Par_Role) :=  ε { Init  A  B

 □ [( _(θΘ) θ‘≠ θ  Mod(θ, Par_Role))] }

Composed Roles: Seq
role Seq_Role (parameters; variables, channels) := %Sequential Composition of A and B

owns {θ:Θ}

local {ε}
init Init

accepts Accept

A ; B

end role

Trigg(Seq_Role) := (flag = 0  Trigg(A))  (flag = 1  Trigg(B))

Init(Seq_Role) := flag = 0  Init(A)  Init

Accept(Seq_Role) := Accept(B)  Accept

Mod(x,Seq_Role) := (flag = 0  Mod(x,A))  (flag = 1  Mod(x,B))

TLA(Seq_Role) :=  ε,flag {Init(Seq_Role)

 □ [(Trigg(A) flag=0)  (Trigg(B) flag=1)

(flag' ≠ flag => flag' = 1

 Accept_A’

 Init_B')

Example: Share protocol

k = hash(Na.Nb)

choose Na
sent it encrypted

withPK of B
{Na}PK(B)

choose Nb
sent it encrypted
withPK of A{Nb}PK(A)

A B

hlpsl: Share: basic roles
role Initiator(A,B, PK: agent -> public_key; SND, RCV: channel (dy)) :=

exists St:{0,1,2}, Na:text (fresh), Nb:text

init St=0

transition

St=0  RCV(start)  St'=1  SND({Na'}PK(B))

St=1  RCV({Nb'}PK(A))  St'=2  secret(hash(Na,Nb’))

goal

secrecy % of hash(Na,Nb)

end goal

end role

role Responder(A,B, PK: agent -> public_key; SND, RCV: channel (dy)) :=

exists St:{0,1,2}, Na:text, Nb:text (fresh)

init St=0

transition

St=0  RCV({Na'}PK(B))  St'=1  SND({Nb'}PK(A))  secret(hash(Na’,Nb’))

goal secrecy end goal

end role

Explicit secrecy goals

Needham-Schroeder Public Key
Protocol (NSPK): Alice

role Alice (A,B: agent,

Ka, Kb: public_key,

SND,RCV: channel (dy)) played_by A def=

exists State : nat, Na : text (fresh), Nb: text

init State=0

knowledge(A) = { inv(Ka) }

transition

step1. State=0 /\ RCV(start) =|> State'=1 /\ SND({Na'.A}Kb)

step2. State=1 /\ RCV({Na.Nb'}Ka) =|> State'=2 /\ SND({Nb'}Kb)

end role

played_by

knowledge

start message to signal an initiator that he should start

step1 and step2 are merely labels

NSPK: Bob

role Bob(A: agent,

Ka, Kb: public_key,

SND,RCV: channel (dy)) played_by B def=

exists State : nat, Na: text, Nb: text (fresh)

init State=0

knowledge(B) = { inv(Kb) }

transition

step1. State=0 /\ RCV({Na'.A}Kb)

=|> State'=1 /\ SND({Na.Nb'}Ka)

step2. State=1 /\ RCV({Nb}Ka)

=|> State'=2

end role

NSPK: Composing the roles

role NSPK(S,R: agent -> channel (dy),

Instances: (agent,agent, public_key,public_key) set) def=

exists A, B: agent, Ka, Kb: public_key

composition

/_{in((A,B,Ka,Kb),Instances)}

Alice(A,B,Ka,Kb,S(A),R(A))

/\ Bob(A,B,Ka,Kb,S(B),R(B))

end role

NSPK: Sessions and Goals

role Environment() def=

composition

NSPK([(a,s_a),(b,s_b)], % S

[(a,r_a),(b,r_b)], % R

[(a,b,ka,kb),(a,i,ka,ki)]) % Instances

end role

goal

Alice weakly authenticates Bob on Nb

Bob weakly authenticates Alice on Na

secrecy of Na, Nb

end goal

Share: goals
1. A->B: {NA}k(B)
2. B->A: {NB}k(A)
Agents will use h(NA,NB) as shared key.
The authentication goals
O A authenticates B on NB (or on (NA,NB))

and
O B authenticates A on NA (or on (NA,NB))
are trivially violated:
1. i(a) -> B: {X}k(B)
2. B -> i(a): {nb}k(A)
Now B believes (X,nb) is the shared key between a and him, while a is not even

present.
O Not a "real" attack:

O intruder does not find out the nonce nb
O and can never use the shared key

Share
Also execution of B is stuck: nobody except B knows the

shared key, nobody can send messages with this key.

Same problem with the first-phase of IKE: intruder can play a
MiM, but can not find out the key and the protocol
execution is stuck, no second-phase protocol can be
executed.

Protocol does not satisfy the authenticate goal:

O when B receives the first message of the protocol, he can
not be sure that it actually comes from A.

A must prove her presence by sending a message encrypted
with the key h(NA,NB).

Share
See this part of protocol as a challenge, add the response:

1. A->B: {NA}k(B)

2. B->A: {NB}k(A)

3. A->B: {0,..}h(NA,NB)

4. B->A: {1,..}h(NA,NB)

“0”, “1” inserted to distinguish the two messages
then intruder can not simply reflect this message 3 from A
back to A

New goals:

O A authenticates B on NA,NB,MA

O B authenticates A on NA,NB,MB

“Incomplete Protocols”
O "the key-exchange phase of the protocol does not YET

provide the authenticate itself, but rather after the first use
of the key the agents authenticate each other."

O We found no further attacks on SHARE.
O We have taken SHARE (with the additional messages 3

and 4) as an example and could verify (within seconds!)
secrecy and weak authentication (in a typed model for an
unbounded number of sessions and agents).

List of ProtocolsSHARE

UMTS-AKA 3GPP

ISO Pub Key wout T3 Party

ChapV2 AAA

EKE cat,sasl,NWWG

SRP cat,sasl,NWWG

EKE2

SPEKE

ASW

AAA-MobileIP mobileip

IKEv2 main mode ipsec

Two-Party RSA Sig Schemes

TLS

TWSS Liberty

Kerberos krb-wg

HIP HIP

Mut Auth for low-power dev

TESLA MSEC

sucv mobileip

BU in IPv6 mobileip

TLS tls

SSH secsh

Key-Priv in Pub-Key Encr PKIX

Payment in UMTS 3GPP

CMS Symmetric Key Mang smime

SET

FairZG

Contents

Internet Layers, Basics

Management, Implementation or Design Errors

Designing Correct Protocols: The Avispa contribution

IETF Groups and Activities

Sec Protocols: Kerberos, AAA,

IPsec, IKE, IKEv2, Wlan,

PKI, TLS

High-level Protocol Spec. Language (hlpsl): Syntax, Semantics,
Goals, Examples

Outlook: MobileIP, HIP, Pana

IP mobility
O MN moves from one IP address to another

O moves between network coverage areas or media types,
O its logical point of network access changes, or
O a whole subnetwork moves (not covered in MobileIP).

O Mobility protocols
O maintain existing connections over location changes
O ensure that MN can be reached at its new location.

O Location management = mechanism for informing other
nodes about MN's current address. Approaches:
O a directory service where MN's location is maintained or
O direct notifications to the nodes that need to know about the

new location.

Mobility Management

Visited Domain

LR HA

Home Domain

Two addresses:
• HoA: home address (fixed: to identify MN)
• CoA: care-of address (to locate MN)

that changes at each new pt of attachment.
How are such „Bindings“ created / modified?

CN
Correspondent Node

Home Agent
Leaf

Router

Mobility Management

LR HA

Triangular Routing
Binding Update (BU):
Route optimization

CN

Security Problems

LR HA

Attacker may redirect the traffic:
MiM
DoS (starving, flodding, boming)

CN

X

IP V6

O Adress size increased from 32 to 128 bits.
O Auto-configuration to generate locally CoA:

Routing prefix MAC Address

• 64-bit routing prefix, which is used for
• routing the packets to the right network

• 64-bit interface identifier,
• which identifies the specific node
• can essentially be a random number.

Mobile IPv6

O MN is identified by a home IP address (HoA)
O IP addresses in MIPv6 can identify either a node or a

location on the network, or both.
O Home agent (HA, a router)

O acts as MN's trusted agent and
O forwards IP packets between MN's correspondent nodes

(CN) and its current location, the care-of address (CoA)
O The MIPv6 protocol also includes a location management

mechanism called binding update (BU).
O MN can send BUs to CN and HA to notify them about the

new location so that they can communicate directly
O MN may also be triggered to sending a BU when it

receives a packet from a new CN via HA.

Binding Update
O MN and HA have a permanent trust relationship and a

preconfigured security association for encrypted and
authenticated communication.

O MN informs HA about its location via this secure tunnel.
O MN and its HA can cooperate to send BUs to CNs, with

which they often have no preexisting relationship.
O CN stores the location information in a binding cache

entry, which needs to be refreshed regularly by sending a
new BU.

Threats

O Misinform CN about MN’s location
O Redirect packets intended for MN

O compromise of secrecy and integrity
O denial-of service (MN unable to communicate).

O Attacker sending bogus BUs may use own address as
CoA, impersonating MN.
O highjack connections between MN and its CNs or
O open new ones.

O Or redirect packets to a random or non-existent CoA
(DOS).
O MN has to send a new BU every few minutes to refresh the

binding cache entry at CN.
O the attacker can make any node believe that any other

node, even a non-MN one, is MN and has moved to the

Replay Attacks
O Time stamps would be problematic because MNs may not

be able to maintain sufficiently accurate clocks.
O Sequence-numbered BUs, on the other hand, could be

intercepted and delayed for later attacks.
O A nonce-based freshness mechanism seems practical

because many related authentication and DoS protection
mechanisms use nonces anyway.

Why not IPSec, IKE, and PKI?

BU authentication: could use strong generic authentication
mechanisms and infrastructure: IPSec, IKE, and PKI.

O Overhead too high for low-end mobile devices and for a
network-layer signaling protocol.

O Internet mobility protocol should allow anyone to become
MN and it must allow all Internet nodes as CNs.
O A single PKI must cover the entire Internet.

Cryptographically
Generated Addresses

(CGAs)
O Take last 64 bits of the IP address (interface identifier) as

one-way hash of a PK. MN signs its location information
with the corresponding private key and sends the PK along
with the data.

O The recipient hashes the public key and compares HAsh to
the address before verifying the signature on the location
data.

O Used without any trusted third parties, PKI, or other global
infrastructure.

O Weakness: at most 64 bits of the IP address can be used
for Hash. Perhaps brute force attack will become possible
during the lifetime of MobIPv6.

CGAs
O Strong signature key generation expensive, but weak

signature keys may be used.
O Advances in storage technology may enable the attacker

to create a large enough database for finding matching
keys at high probability.

O CGA do not stop the attacker from inventing new false
addresses with an arbitrary routing prefix. The attacker can
generate a public key and a matching IP address in any
network. Thus CGA addresses prevent some packet-
flooding attacks against individual addresses but not
against entire networks.

O Public-key protocols (including CGA) are computationally
intensive and expose the participants to DoS.

Routing-based authentication
O Idea: send 1st message through a relatively safe route (hope it

is not intercepted).
O Here: Route between CN and HA.
O CN can send a secret key to HA (plaintext).

O HA forwards key to MN (secure tunnel),
O MN uses key for authenticating a BU to CN:

O MN  CN: BU with MAC (computed with secret key).

HA

CN

Routing-based authentication

O Reasonable: very few Internet nodes can listen to or modify
packets on the right routers to mount an attack against a given
connection.

O At most 10-20 routers see the secret keys for a specific connection
O Not secure in the classical sense

O But much better than unauthenticated situation.
O HA and CN are typically located on the wired network and

communication is relatively secure compared to the packets to
and from a wireless MN.

O An attacker between MN at home and a CN can mount equally
damaging attacks

O Recall that the goal is to address the additional threats created by
mobility

O Weaker than CGA

Sending 2 Pieces of
Authentication DataO Other proposals for BU authentication:

O Send 2 pieces of authentication data between CN and
MN via 2 independent routes and hoping that most
attackers are unable to capture both of them.

HA

CN

Leap-of-faith
authentication

O MN sends a session key insecurely to CN at the beginning
of their correspondence and the key is used to
authenticate subsequent BUs, no safe route.
O Attacker can send false key before the MN sends the key
O Need a recovery mechanism for situations where MN or CN

loses its state; attacker can exploit this mechanism
O Attacker can trigger the BU protocol at any time by sending to

MN's home address a spoofed packet that appears to come
from CN

Ingress Filtering
A way of limiting the number of potential attackers.
O A gateway router or firewall

O checks the source addresses of outgoing packets
O drops ones that do not originate from the network

O Prevents nodes on the network from sending spoofed packets that claim to
come from other networks

O Since MN's new address in a MIPv6 BU is usually sent in the source address
field of the IP packet header, ingress filtering limits the choice of false
addresses.

O There are, however, two well-known weaknesses:
O Ingress filtering must be applied on the attacker's local network; on the

target network it makes no difference.
O MIPv6 specifies an alternative mechanism (Alternative CoA sub-option)

that can be used for sending a false CoA without source spoofing.

Another DoS

Authentication does not prevent the attacker from lying
about its own location.

O Attacker acts as MN, sends false location data to CNs
and get them to send traffic to an arbitrary IP address.

O It first subscribes to a data stream (e.g. a video stream
from a public web site) and then redirects this to the
target address.

O Bomb any Internet node or network with excessive
amounts of data.
O Attack an entire network by redirecting data to a nonexistent

address and congesting the link toward the network.
O The attacker may even be able to spoof the (say TCP)

acknowledgements

Another DoS (cont)
O The attacker performs the TCP handshake itself and thus knows the initial

sequence numbers. After redirecting the data to the target, it suffices to send
one spoofed ack per TCP window to CN.

O TCP provides some protection against this attack:
O If the target address belongs to a real node, it will respond with TCP Reset,

which prompts CN to close the connection.
O If target is a non-existent address, the target network may send ICMP

Destination Unreachable messages. Not all networks send this latter kind
of error messages.

O The attack is not specific to MIPv6:
O Dynamic updates are made to Secure DNS, there is no requirement or

mechanism for verifying that the registered IP addresses are true.
O ICMP Redirect messages enable a similar attack on the scale of a local

network. We expect there to be other protocols with the same type of
vulnerability.

Variation: Bombing HoA
O Im MIPv6 the MN has a default address, to which data will be sent when its

current location is unknown.
O Attacker claims to have a HoA in the target network. It starts downloading a

data stream and either sends a request to delete the binding cache entry or
allows it to expire. This redirects the data stream to the false HoA .

O CGA prevents bombing individual addresses but not whole networks
O generate a new address with its routing prefix.

Bombing HoA
O The target itself cannot do anything to prevent the attack.

O it does not help if the target stops sending or accepting BUs.
O The attacker needs to find a CN that is willing to send data streams to

unauthenticated recipients.
O Many popular web sites provide such streams.

O A firewall on the border of the target network may be able to filter out packets
to nonexistent addresses.

O However, IPv6 addressing privacy features can make such filtering
difficult.

Limiting bombing attacks:
Return Routability

O Test the return routability (RR) of MN's new address
O CN sends a packet with a secret value to the new location and accepts

the BU only if MN is able to return the value (or hash)
O Thus MN can receive packets at the claimed address
O Number of potential attackers is strongly reduced

O Figure shows how a BU is authenticated using two secrets, which CN sends
to MN's home and CoAs. The secret sent directly to the CoA forms the RR
test.

O The RR test can be seen as a variation of the cookie exchange, used in TCP,
Photuris, and IKE

HA

CN

RR

O Expiry of a binding cache
O Deleting the cache entry means that MN's new address defaults to the HoA

, but since MN may have become unreachable, it is not always possible to
test RR for the new address.

O One solution:
O mark the cache entry as invalid and
O stop sending data to MN until the RR test succeeds

O Then some cache entries are never deleted.
O Alternative: additional RR test for the HoA during every BU

O Invariant: a successful RR test for the HoA has been performed recently
O When the cache entry needs to be deleted, it can be deleted immediately

O BU cancellation, expiring cache entry, or failing BU authentication
O This limits bombing-attack targets to networks where attacker has recently

visited.

RR
O In routing-based authentication (CN sends a plaintext key

to MN via its HoA), the same secret key can also serve as
the RR test for the HoA .

O Thus CN tests return routability of both HoA and CoA.
O RR is complementary to CGA-based BU authentication,

which does not prevent bombing of the home network.

Transport layer: Flow
Control

O When sending a data flow into a new route, CN could first verify that this
route accepts the data

O Send first a single packet and increase the transmission rate gradually.
O TCP: reset the TCP window size to one packet when MN moves. This would,

in effect, test return routability of the new route before sending large amounts
of data into it.

O Adding a secure RR test to all transport protocols and changing existing
implementations is not be possible in practice.

O Some transport-layer protocols either do not practice TCP compatible
congestion control or allow spoofing of acknowledgments.

O Therefore: return routability test in the IP layer.

DoS Attacks against unnecessary BU
Authentication

O When a MIPv6 MN receives an IP packet from a new CN
via its home network, it may automatically send a BU to
CN.

O The attacker can exploit this by sending MN spoofed IP
packets (e.g. ping or TCP SYN packets) that appear to
come from different CN addresses.

O The attacker will automatically start the BU protocol with
all these CNs.

O If CN addresses are real addresses of existing IP nodes,
most instances of the BU protocol will complete
successfully. The entries created into the binding caches
are useless.

O This way, the attacker can induce MN or CN to execute
the BU protocol unnecessarily, which will drain host's
resources.

O A strong cryptographic authentication protocol is more

Reflection and
Amplification

O Reflection: Attacker sends data to other nodes and tricks them into sending the same
number, or more (amplification), packets to the target.

O Possible even when ingress filtering prevents source address spoofing.
O The location management protocols could also be used for reflection. For example, CN

in Figure responds to the initial packet by sending two packets to MN (one to the HoA
and one to the new address).

O If public-key authentication is used, the packets sent by CN may be significantly
larger than the one that triggers them.

Preventing Resource Exhaustion: Delaying
Commitment

O Idea: delay committing one's resources until other party has shown its honesty
O Require first a weaker authentication, such as a RR, before expensive computation.
O Making the protocol parties stateless:

O usually only the responder can be stateless,
O not clear which party initiates the BU process and which one responds.

O MN normally initiates the authentication,
O this may be triggered by a packet belonging to another protocol that arrived from CN via

HA.
O Moreover, if a packet sent by CN triggers a BU, CN's IP layer does not know that this was

the case because the IP layer is stateless and does not maintain a history of sent packets.
O Make CN stateless until the BU has been authenticated.

O One way in which CN can remain stateless is to derive a values Ka using a one-way
function from a secret value N known only by CN and a value dependent on the MN:

O CN uses the same value of N for all MNs.
O It can discard Ka because it can recompute the values after receiving the final

message.
O CN generates a new secret Ni periodically.

Cryptographic puzzles
O Used to protect against resource-exhaustion attacks.
O A server requires its clients to solve a puzzle, e.g. bruteforce search for some

input bits of a one-way function, before committing its own resources to the
protocol.

O The server can adjust the difficulty of the puzzles according to its load.
O Solving the puzzle creates a small cost for each protocol invocation, which

makes flooding attacks expensive but has little effect on honest nodes.
O Drawbacks:

O IP layer does not know which node is the server (i.e. the respondent)
O MNs often have limited processor and battery capacity while an attacker

pretending to be a MN is likely to have much more computational
resources

O The puzzle protocols work well only when all clients have approximately
equal processing power

Setting a limit on the amount of resources

O Processor time, memory and communications bandwidth, used for location
management.

O When the limit is exceeded, communication needs to be prioritized.
O A node that exceeds the limit should stop sending or accepting BUs and

allow binding cache entries to expire.
O Although communication can continue via MN's home network, it is

suboptimal.
O Node should try to resume normal operation when attack may be over.
O Ingress filtering at the attacker's local network mitigates the resource

exhaustion attacks by making it easier to trace the attacker and to filter out
the unwanted packets.

Favoring Regular CustomersO CN's local security policy: allow BUs with some
O high-priority MNs or
O those with which it has a long-term relationship or
O recent meaningful communication.

O The decision may violate the layering principle: a Web server could accept
BUs from its clients after it has successfully executed the TCP handshake.

How does MN obtain its
CoA?

O IPv6 stateless address autoconfiguration used to obtain
an IPv6 address for MN.

O Host combines tentative interface identifier with link-local
address prefix and probes address with a Neighbor
Solicitation message.

O If another host is already using this address then he
sends a Neighbor Advertisement message.

O An intruder can use this protocol exchange for a DoS
attack.

O IETF Send WG tries to solve this problem.
O Stateful address autoconfiguration (DHCP)

Security Problems?
O Binding Updates (BU) are

security relevant.

 BU enables
source routing

O Unprotected BUs:

- Denial of Service attacks
- Man-in-the-Middle attacks

O Binding Updates between HA<->MN and between CN<-> MN experience different protection.

Binding Update

Data Flow without Route
Optimization

Mobile Node
Home Agent

Correspondent
Node

Visited Network

Home Network

Leaf Router

Packet
Modifications

Adversary

The Home Address

O The home address (HoA) must be unique for each MN
(global reachable IP address).

O Functionality:
O Connection endpoint identifier for long-lived connection
O Is used to reach MN
O (HoA,CoA) pair used to create profile for personalization
O Can used to identify MN for billing and charging

(additionally to NAI)

Selected Problem 1: Privacy
[RFC2462]

O Hosts selects interface identifier
O Interface identifier is based on the link layer address
O Since the link layer address rarely changes MN is uniquely

identified
O CoA Prefix reveals location of MN (source address)
O HoA

O represents long-lived endpoint identifier
O is unencrypted
O revealed to CN (Route Optimization)

O CoA and/or HoA enable profiling

Solutions for Privacy
Problem

O Bi-directional IPSec tunnel from MN to HA
O Very expensive communication

O HA option encryption
O Requires modification to IPSec

O IPv6 Privacy Extension
O Changing stateless address

autoconfiguration
O Disable Route Optimization

O Performance degradation
O Castelluccia Mobile IPv6 Privacy Proposal

O Uses Temporal Mobile Identifier
O TMI changed temporarily, HoA

encrypted

Bin
din

g U
pd

ate

Binding Update

Data Flow without Route
Optimization

Data
 Fl

ow
 w

ith
 R

ou
te

Opti
miza

tio
n

Mobile Node
Home Agent

Correspondent Node

Visited Network
Home Network

Router
Advertisement

Leaf Router

Standard Sec Infrastructure
cannot be used

O To enable route optimization
 BU must be sent to CN

O Consequences:
O Security Association between MN-CN required
O Previously suggested: IPsec (together with IKE)
O IPsec does not address mobility specific problems; IKE is computationally

expensive;
O Public key infrastructure not available
O Protection of BU difficult

 IPSec policies too coarse grained
O CN has to run many IKE exchanges
O CN has to store a large number of SAs
O Vulnerability against active attackers may be acceptable

 Unauthenticated key agreement/key transport

Selected Problem 2:
Address Ownership

O Authorization Problem
O MN must show that it is owner of an IP address

O Is this MN allowed to set the (CoA,HoA)-binding?
O First proposal to address this mobility & security problem:

O Purpose Built Keys
O Proposal does not require a PKI or similar security

infrastructure
O Does not provide “perfect” security (i.e. protection against all

attacks)

O After this proposal was published similar proposals have
been submitted.

Purpose Built Keys

Home Agent

Visited Network
Home Network

Leaf Router

End
po

int
 Id

en
tifi

er
(E

ID
)

Mobile Node

Correspondent Node

{B
ind

ing
 U

pd
ate

, P
K(m

n),
 [n

on
ce

|tim
es

tam
p]

}S
K(m

n)

Mobile IPv6 Security
MN  CN Binding Update

MN

Home
Network

CN

HA

Home Test Init

Home Test Init

Binding
Update Care-of Test InitHome Test

Home Test

Care-of
Test

Security Property: Return Routability
Verifies that a node is able to respond to packets sent
to a given address
Assumption: Routing infrastructure is secure

HIP (Host Identity Payload
+ Protocol) Overview

O Protocol proposal submitted by Bob Moskowitz.
O HIP is developed independently (not within an IETF

working group).

O Protocol proposal contains:

O A new namespace / new identity

O An authentication and key exchange protocol

O Architecture

HIP: A new namespace /
new identity

O Basic Idea: Cryptographic identity for a host
O An IP address to identify a host is not the best idea

(see multi-homed hosts, virtual interfaces)

O Used Identities:
O Host Identity (=Public Key)
O Host Identity Tag (=hash of the public key, 128 bit)
O SPI (same as in IPSec)
O LSI (32-bit Local Scope Identity)

O Security Association indexed by Host Identity Tag (HIT)
O 32 bit value (LSI) is used to support IPv4 applications
O Host Identities can be well-known or anonymous
O Higher layers only see identities, not addresses

HIP Architecture
An additional Identifier

Application-specific identifiers Application Layer

Transport Layer
Pairs <IP address, Port#> +

Transport Protocol ID

Host IdentityHost Identity (HI)

Network LayerIP address

Data Link LayerLink layer address

HIP: Authentication and
key exchange

O The HIP protocol is used to create an IPSec ESP security association

O The protocol has the following properties:
O DoS protection with the client-puzzle mechanism
O Re-keying provided by a separate protocol
O Digital signatures and certificates are exchanged in a DNS like data structure.
O The DNS protocol is strongly integrated with HIP
O Identities are stored into the DNS (DNS Binary Labels allow reverse mapping).

O Including the HIP identity in every packet would be difficult. Therefore HIP is always
combined with IPSec ESP where the HIP Identity is “compressed” into IPsec ESP SPI.

HIP Properties
O IP addresses still used for routing packets.
O Bandwidth conservative
O Each host must have at least one key pair
O A 128 bit hash or tag to be used in system calls
O End-to-end use but integration of intermediate devices

planned.
O HIT replaces IP address as the ‘name’ of a host
O Enables mobility and allows simpler multi-homing
O Addressing realm friendliness
O Support for different addressing schemes, end-to-end =>

IPv4/IPv6 migration

What about PKI and HIP?

O HIP assumes interaction with DNS
O Identity in KEY records
O DNSSEC required for trustable as the 3rd party

authentication

O Payload uses DNS RR formats
O Reuse existing code
O KEY, SIG, OPT, and A records
O Subject to change to reduce packet size

HIP Protocol Exchange
Initiator Responder

HIT(I), HIT(R)

HIT(R), HI(R), HIT(I), PK(R), HIP
Transform, ESP Transform,

HIP_Cookie, HIP SIG

HIT(I), HIT(R), HIP Cookie, LSI(R),
SPI(R), PK(I), HIP Transform, { ESP

Transform, HI(I)}k(i,r), HIP SIG

HIT(R), LSI(I), SPI(I), { HI(R), HIP
Cookie}k(i,r), HIP SIG

HIP Protocol Exchange
Legend

O Host Identity Tag – HIT
O Host Identity – HI
O I – Initiator
O R – Responder
O PK(R), PK(I) – Diffie-Hellman Public Key of Responder (Initiator)
O k(i,r) – session key computed between I and R
O HIP SIG – Digital Signature computed over the entire packet
O HIP (ESP) Transport – List of algorithm to be negotiated (used)
O HIP Cookie – Values required for the Client Puzzle
O LSI – Local Scope Identity
O SPI – Security Parameter Index

Special HIP Packets
O Message for rekeying

O Bootstrapping for the case where the initiator does not
possess the HIT of the responder.

O Packet to announce readdressing
O Readdressing required because of:

O PPP reconnect
O DHCP new lease, IPv6 address prefix change
O Mobility related readdressing
O IPv6 privacy related IP address change

Summary
O HIP introduces new and interesting concepts.
O The introduction of a new address space based on a

cryptographic identity makes a lot of things easier:
O Mobility
O Multi-Homing
O IPv4/IPv6 Transition

O Solutions are already there for these problems;
HIP solves the problems in a different way.

O Additionally HIP has security integrated into the protocol.
O Open Source implementations might create an interesting

alternative.

Authentication,
Authorization and
Accounting (AAA)

O Authorization: Is a particular entity able to pay for the requested resources?
O Which resource?

O Certain services
O Specific QoS
O Amount of time being online
O Data volume transmitted/received

O Goal:
O 1) Establishing a financial settlement
O 2) Prevent unauthorized nodes from gaining access to resources

O Two basic models for (1):
O Subscription-based Architecture
O Alternative Access Architecture

Subscription-based
Architecture

Access
Network

MN

AR

AAA

Home
Network

AAAL

Terms:
AAAL - Local AAA server

AAAH - Home AAA server

AAAH

AAA

EAP over PANA,
IEEE 802.1x,
ICMP, etc.

•MN is registered at home network (typically secret key based).

•Several protocol proposals exist for transport of AKA information
between MN and the AAA attendant.

Alternative Access
Architecture

Access
Network

Charging

MN

AR

Background
Payment System

Charging

Background
Payment System

CCS CCCAAA

Terms:
CCS – Credit Control Server

CCC – Cost Charging Centre

EAP over PANA, IEEE
802.1x, ICMP, etc.

PANA
O Protocol for carrying Authentication for Network Access

(pana)
O Provides carrier for EAP messages over IP (UDP)
O Provides in-order delivery of packets
O PANA is a protocol for heterogeneous network access

(link layer agnostic).
O PANA provides a mechanism for the PAC to discover the

PAA on the link
O Provides different mechanisms to prevent unauthorized

nodes from accessing the network (interaction with other
protocols)

PANA Framework

Note that some protocol interactions are optional.
Terminology: http://www.ietf.org/internet-drafts/draft-ietf-pana-requirements-05.txt

PaC EP PAA AAA

PAA Discovery

PANA Request

AAA Interaction

PANA Response

Filter information
installation

PANA SA PANA SA

Access control SA establishment

Protected PANA Messages

http://www.ietf.org/internet-drafts/draft-ietf-pana-requirements-05.txt

PANA Security Association
Establishment

PANA relies on EAP methods to produce keying material for PANA SA.

PaC PAA AAA

AAA Session
Key Transport

PANA SA PANA SA

EAP Authentication (PaC  AAA[L|H] Authentication)

PAA Discovery

Protected PANA Messages

Literature
O PANA IETF WG:

O http://www.ietf.org/html.charters/pana-charter.html
O WLAN Security:

O Fluhrer, Mantin, Shamir: "Weaknesses in the Key Scheduling Algorithm of
RC4"
(see http://citeseer.nj.nec.com/fluhrer01weaknesses.html)

O EAP IETF WG:
O http://www.ietf.org/html.charters/eap-charter.html

O AAA IETF WG:
O http://www.ietf.org/html.charters/aaa-charter.html

O PPPEXT IETF WG:
O http://www.ietf.org/html.charters/pppext-charter.html

O Airsnort Software:
O http://airsnort.shmoo.com/

O Open Source IEEE 802.1X (EAP) Implementation:
O http://www.open1x.org

http://www.ietf.org/html.charters/pana-charter.html
http://citeseer.nj.nec.com/fluhrer01weaknesses.html)
http://www.ietf.org/html.charters/eap-charter.html
http://www.ietf.org/html.charters/aaa-charter.html
http://www.ietf.org/html.charters/pppext-charter.html
http://airsnort.shmoo.com/
http://www.open1x.org

Literature
O Linux (FreeS/Wan: http://www.freeswan.org/)
O Contains AH, ESP (Klips) and IKE (Pluto)
O IETF IPsec WG: http://www.ietf.org/html.charters/ipsec-charter.html
O AES Support: http://www.irrigacion.gov.ar/juanjo/ipsec/
O IPv6 and IPSec: http://www.ipv6.iabg.de
O BSD (e.g. http://www.netbsd.org/Documentation/network/ipsec/)
O IKE Daemon: Racoon
O Provides Traffic Selectors at a fine-grain granularity and “policy” management
O PF_KEY: RFC 2367
O API for the communication with the kernel-based key engine (Security

Association Database (SADB) and Security Policy Database (SPD))

http://www.freeswan.org/)
http://www.ietf.org/html.charters/ipsec-charter.html
http://www.irrigacion.gov.ar/juanjo/ipsec/
http://www.ipv6.iabg.de
http://www.netbsd.org/Documentation/network/ipsec/)

Literature

O Kerberos IETF WG:
O http://www.ietf.org/html.charters/krb-wg-charter.html

O Kerberos V4
O Steiner, B., Neuman, C., Schiller, J.: "Kerberos: An Authentication Service

for Open Network Systems", USENIX Conference, (Dallas, TX), pp. 191-
201, 1988.

O KINK
O http://www.ietf.org/html.charters/kink-charter.html

O Kerberos V5
O http://www.ietf.org/rfc/rfc1510.txt

O MIT Kerberos Software implementation:
O http://web.mit.edu/kerberos/www/

http://www.ietf.org/html.charters/krb-wg-charter.html
http://www.ietf.org/html.charters/kink-charter.html
http://www.ietf.org/rfc/rfc1510.txt
http://web.mit.edu/kerberos/www/

Literature
O IETF Mobile IP WG:

O http://www.ietf.org/html.charters/mobileip-charter.html
O Particularly interesting are the following drafts:

O MIPv4, MIPv6; Hierarchical Mobile IPv6 mobility management
O Fast Handovers for Mobile IPv6

O IETF AAA WG:
O http://www.ietf.org/html.charters/aaa-charter.html

O IETF Context Transfer, Handoff Candidate Discovery, and Dormant Mode
Host Alerting (seamoby):

O http://www.ietf.org/html.charters/seamoby-charter.html

O IRTF Routing Research Group (Micromobility)
O http://www-nrc.nokia.com/sua/irtf-mm-rr/IRTF-mm-rr.htm

http://www.ietf.org/html.charters/mobileip-charter.html
http://www.ietf.org/html.charters/aaa-charter.html
http://www.ietf.org/html.charters/seamoby-charter.html
http://www-nrc.nokia.com/sua/irtf-mm-rr/IRTF-mm-rr.htm

Literature

O Host Identity Payload and Protocol
O http://homebase.htt-consult.com/~hip/draft-moskowitz-hip-05.txt

O Host Identity Payload Implementation Issues
O http://homebase.htt-consult.com/~hip/draft-moskowitz-hip-impl-01.txt

O Host Identity Payload Architecture
O http://homebase.htt-consult.com/~hip/draft-moskowitz-hip-arch-02.txt

O Implementations:
O HIPL: HIP for Linux http://gaijin.iki.fi/hipl/

http://homebase.htt-consult.com/~hip/draft-moskowitz-hip-05.txt
http://homebase.htt-consult.com/~hip/draft-moskowitz-hip-impl-01.txt
http://homebase.htt-consult.com/~hip/draft-moskowitz-hip-arch-02.txt
http://gaijin.iki.fi/hipl/

