Course Name:
Database Managemen
Systems

Lecture 15 %

Topics to be covered X

A Functional Dependencies

The Evils of Redundancy X

o is at the root of several problems associated with rel%(
schemas:

o % 3
O Integrity constraints, in particular , can %@?ﬁg
to identify schemas with such problems and to suggest refinements.

O Main refinement technique:
AB and BCD, or ACD and ABD).

(replacing ABCD wit

INTRODUCTION TO SCHEMA REFINEMENT %

Problems Caused by Redundancy %

Storing the same information redundantly, that is, in

more than one place within a database, can lead to several
problems: ;ﬁ%

Redundant storage: Some information is stored
repeatedly.

Update anomalies: If one copy of such repeated data is
updated, an inconsistency

is created unless all copies are similarly updated. %%

Insertion anomalies: It may not be possible to store
some information unless

some other information is stored as well.
Deletion anomalies: It may not be possible to delete

some information without *

losing some other information as well. %

Consider a relation obtained by translating
variant of the Hourly Emps entity set S

Ex: Hourly Emps(ssn, name, lot, rating, hour
wages, hours worked,)

The key for Hourly Emps is ssn. In addition,
suppose that the hourly wages attribute ;%f

is determined by the rating attribute. That is,
for a given rating value, there is only

one permissible hourly wages value. This IC
Is an example of a functional dependency.
It leads to possible redundancy in the *

relation Hourly Emps

Use of Decompositions %

Intuitively, redundancy arises when a relational
schema forces an association between attributes that
is not natural.

Functional dependencies (ICs) can be used to ident
such situations and to suggest revetments to the

schema.

The essential idea is that many problems arising from
redundancy can be addressed by replacing a relatio
with a collection of smaller relations. %%

Each of the smaller relations contains a subset of the
attributes of the original relation.

We refer to this process as decomposition of the
larger relation into the smaller relations

NV=

We can deal with the redundancy in Hourly Emps by dec ing
it into two relations:

Hourly Emps2(ssn, name, lot, rating, hours worked) %
Wages(rating, hourly wages)

L LB

rating | hourly wages Bﬁg '
8 10

7

hours worked

ssn name lot | rating
123-22-3666
2522 Attishoo [48| 8 40
231-31-3368 :
Smiley 22| 8 30
131-24-3650 | Smethurst
2 methurs 3| & 30

Problems Related to Decompositio%

O Unless we are careful, decomposing a relation schema %
can create more problems than it solves.

O Two important questions must be asked repeatedly%ég
O 1. Do we need to decompose a relation?

O 2. What problems (if any) does a given decomposition
cause?

O To help with the rst question, several normal forms %%
have been proposed for relations.

O If a relation schema is in one of these normal forms,
we know that certain kinds of

O problems cannot arise. Considering the n

NV=

Functional Dependencies (FDs) X

O A functional dependency holds over relation R if, for every
allowable instance r of R:
otli r, t2 r, ‘t1) = (t2) implies (t1) = (t2) "val S

7wIN
o i.e., given two tuples in r, if the X values agree, then the Y values must

agree. (X and Y are sets of attributes.)
O An FD is a statement about allowable relations.

o Must be identified based on semantics of application.

Example: Constraints on Entity Set%

s

O Consider relation obtained from Hourly_Emps:

o Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked) NG

o We will denote this relation schema by listing the att

o This is really the of attributes {S,N,L,R,W,H?}.

ssn is the key: —>

rating determines hrly_wages:

Example (Contd.) Wages 2 %

Hourly_Emps2
\ _ﬂ

7

O Problems due to R W :

o Can
we change W in just
the 1st tuple of SNLRWH?

we want to insert an >§27’:6
employee and don’t know the

e i L AL

K

o If we
delete all employees with
rating 5, we lose the
information about the wage

[= /
for rating 5! E:@
~ , I

—

A
n

Constraints on a Relationship Set %

O Suppose that we have entity sets Parts, Suppliers, %
and Departments, as well as a relationship set
Contracts that involves all of them. We refer to the

schema for Contracts as CQPSD. A contract with
contract id ;g%@

O C species that a supplier S will supply some
quantity Q of a part P to a department D.

O We might have a policy that a department %
purchases at most one part from any given
supplier.

O Thus, if there are several contracts between the
same supplier and department,

O we know that the same part must be involved i
of them. This constraint is an FD, DS ! P.

NV=

Reasoning About FDs x

O Given some FDs, we can usually infer additional FDs:
o Ssn did, did lot implies ssn lot N
O An FD fis a set of FDs F if f holds whenever all FDs
o = is the set of all FDs that are implied by F.
O Armstrong’s Axioms (X, ¥, Z are sets of attributes):
Reflexivity: =N
Augmentation:
Transitivity:

%

sound complete

Reasoning About FDs (Contd.) X

O Couple of additional rules (that follow from AA):

o o IfF X Y and X Z, then X \ 4

o If X YZ, then X Y and X Z
O Example: and:

o Cis the key:

Project purchases each part using single contract:

o
o
o

Dept purchases at most one part from a supplier:

Reasoning About FDs (Contd.) X

O Computing the closure of a set of FDs can be expensive. (Size of?:%i
is exponential in # attrs!)

NS

N

. \MNL /SN2y
/% /7 <>D >

Y is in the clo

O Typically, we just want to check if a given FD X
set of FDs F. An efficient check:

o Compute of X (denoted) wrt F:
O Set of all attributes A such that X

Aisin

X-I—

—>: > N —>

is A— E in the cIosureF‘l‘ ? Equivalently, is E in A+ ?

Closure of a Set of FDs % S

O The set of all FDs implied by a given set F of FDs is

called the closure of F and is denoted as F+. ;g%(

O An important question is how we can infer, or
compute, the closure of a given set F of FDs.

O The following three rules, called Armstrong's
Axioms, can be applied repeatedly to infer all FDs
implied by a set F of FDs.

O We use X, Y, and Z to denote sets of attributes ov

relation schema R:

Closure of a Set of FDs %

O Reflexivity: If X Y, then X /Y. %

O Augmentation: If X !/ Y, then XZ ! YZ for any Z.

O Transitivity: If X/ Yand Y ! Z, then X I Z.

O Armstrong's Axioms are sound in that they generat@?é(
only FDs in F+ when applied to a set F of FDs.

O They are complete in that repeated application of these
rules will generate all FDs in the closure F+. %%

O It is convenient to use some additional rules while
reasoning about F+:

O Union: If X!/ Yand X! Z, then X IYZ.
O Decomposition: If X/ YZ, then X Y and X ! Z.

O These additional rules are not essential; their sound
can be proved using Armstrong's Axioms.

NV=

Attribute Closure %

If we just want to check whether a given dependency, say, X — Y,
is in the closure of a set F of FDs,

we can do so eciently without computing F+. We rst compute
attribute closure X+ with respect to F,
which is the set of attributes A such that X — A can be inferred

using the Armstrong Axioms.

The algorithm for computing the attribute closure of a set X of
attributes is

closure = X;

repeat until there is no change: {

if there is an FD U — V in F such that U subset of closure,
then set closure = closure union of V
}

