
Course Name:
Database Management
Systems

Lecture 15
Topics to be covered

 Functional Dependencies

The Evils of Redundancy

 Redundancy is at the root of several problems associated with relational
schemas:

 redundant storage, insert/delete/update anomalies

 Integrity constraints, in particular functional dependencies, can be used
to identify schemas with such problems and to suggest refinements.

 Main refinement technique: decomposition (replacing ABCD with, say,
AB and BCD, or ACD and ABD).

 Decomposition should be used judiciously:

 Is there reason to decompose a relation?

 What problems (if any) does the decomposition cause?

INTRODUCTION TO SCHEMA REFINEMENT

Problems Caused by Redundancy

Storing the same information redundantly, that is, in
more than one place within a database, can lead to several
problems:

Redundant storage: Some information is stored
repeatedly.

Update anomalies: If one copy of such repeated data is
updated, an inconsistency

is created unless all copies are similarly updated.

Insertion anomalies: It may not be possible to store
some information unless

some other information is stored as well.

Deletion anomalies: It may not be possible to delete
some information without

losing some other information as well.

Consider a relation obtained by translating a
variant of the Hourly Emps entity set

Ex: Hourly Emps(ssn, name, lot, rating, hourly
wages, hours worked)

The key for Hourly Emps is ssn. In addition,
suppose that the hourly wages attribute

is determined by the rating attribute. That is,
for a given rating value, there is only

one permissible hourly wages value. This IC
is an example of a functional dependency.

It leads to possible redundancy in the
relation Hourly Emps

Use of Decompositions
 Intuitively, redundancy arises when a relational
schema forces an association between attributes that
is not natural.

Functional dependencies (ICs) can be used to identify
such situations and to suggest revetments to the
schema.

The essential idea is that many problems arising from
redundancy can be addressed by replacing a relation
with a collection of smaller relations.

Each of the smaller relations contains a subset of the
attributes of the original relation.

We refer to this process as decomposition of the
larger relation into the smaller relations

We can deal with the redundancy in Hourly Emps by decomposing
it into two relations:

Hourly Emps2(ssn, name, lot, rating, hours worked)

Wages(rating, hourly wages)

rating hourly wages

8 10

5 7

ssn name lot rating
hours worked

123-22-3666

Attishoo 48 8 40

231-31-5368

Smiley 22 8 30

131-24-3650

Smethurst

35 5 30

434-26-3751

Guldu

35 5 32

612-67-4134

Madayan

35 8 40

Problems Related to Decomposition

 Unless we are careful, decomposing a relation schema
can create more problems than it solves.

 Two important questions must be asked repeatedly:

 1. Do we need to decompose a relation?

 2. What problems (if any) does a given decomposition
cause?

 To help with the rst question, several normal forms
have been proposed for relations.

 If a relation schema is in one of these normal forms,
we know that certain kinds of

 problems cannot arise. Considering the n

Functional Dependencies (FDs)

 A functional dependency X Y holds over relation R if, for every
allowable instance r of R:

 t1 r, t2 r, (t1) = (t2) implies (t1) = (t2)

 i.e., given two tuples in r, if the X values agree, then the Y values must also
agree. (X and Y are sets of attributes.)

 An FD is a statement about all allowable relations.

 Must be identified based on semantics of application.

 Given some allowable instance r1 of R, we can check if it violates some FD f,
but we cannot tell if f holds over R!

 K is a candidate key for R means that K R

 However, K R does not require K to be minimal!



   X  X
 Y Y




Example: Constraints on Entity Set

 Consider relation obtained from Hourly_Emps:

 Hourly_Emps (ssn, name, lot, rating, hrly_wages, hrs_worked)

 Notation: We will denote this relation schema by listing the attributes:
SNLRWH

 This is really the set of attributes {S,N,L,R,W,H}.

 Sometimes, we will refer to all attributes of a relation by using the relation
name. (e.g., Hourly_Emps for SNLRWH)

 Some FDs on Hourly_Emps:

 ssn is the key: S SNLRWH

 rating determines hrly_wages: R W




Example (Contd.)

 Problems due to R W :

 Update anomaly: Can
we change W in just
the 1st tuple of SNLRWH?

 Insertion anomaly: What if
we want to insert an
employee and don’t know the
hourly wage for his rating?

 Deletion anomaly: If we
delete all employees with
rating 5, we lose the
information about the wage
for rating 5!



S N L R W H

123-22-3666 Attishoo 48 8 10 40

231-31-5368 Smiley 22 8 10 30

131-24-3650 Smethurst 35 5 7 30

434-26-3751 Guldu 35 5 7 32

612-67-4134 Madayan 35 8 10 40

S N L R H

123-22-3666 Attishoo 48 8 40

231-31-5368 Smiley 22 8 30

131-24-3650 Smethurst 35 5 30

434-26-3751 Guldu 35 5 32

612-67-4134 Madayan 35 8 40

R W

8 10

5 7Hourly_Emps2

Wages

Constraints on a Relationship Set
  Suppose that we have entity sets Parts, Suppliers,
and Departments, as well as a relationship set
Contracts that involves all of them. We refer to the
schema for Contracts as CQPSD. A contract with
contract id

 C species that a supplier S will supply some
quantity Q of a part P to a department D.

We might have a policy that a department
purchases at most one part from any given
supplier.

 Thus, if there are several contracts between the
same supplier and department,

 we know that the same part must be involved in all
of them. This constraint is an FD, DS ! P.

Reasoning About FDs

 Given some FDs, we can usually infer additional FDs:

 ssn did, did lot implies ssn lot

 An FD f is implied by a set of FDs F if f holds whenever all FDs in F hold.

 = closure of F is the set of all FDs that are implied by F.

 Armstrong’s Axioms (X, Y, Z are sets of attributes):

 Reflexivity: If X Y, then Y X

 Augmentation: If X Y, then XZ YZ for any Z

 Transitivity: If X Y and Y Z, then X Z

 These are sound and complete inference rules for FDs!

  

F 

 
 

  

Reasoning About FDs (Contd.)
 Couple of additional rules (that follow from AA):

 Union: If X Y and X Z, then X YZ

 Decomposition: If X YZ, then X Y and X Z

 Example: Contracts(cid,sid,jid,did,pid,qty,value), and:

 C is the key: C CSJDPQV

 Project purchases each part using single contract:

 JP C

 Dept purchases at most one part from a supplier: S

 D P

 JP C, C CSJDPQV imply JP CSJDPQV

 SD P implies SDJ JP

 SDJ JP, JP CSJDPQV imply SDJ CSJDPQV

  
  






  

 
  

Reasoning About FDs (Contd.)

 Computing the closure of a set of FDs can be expensive. (Size of closure
is exponential in # attrs!)

 Typically, we just want to check if a given FD X Y is in the closure of a
set of FDs F. An efficient check:

 Compute attribute closure of X (denoted) wrt F:

 Set of all attributes A such that X A is in

 There is a linear time algorithm to compute this.

 Check if Y is in

 Does F = {A B, B C, C D E } imply A E?

 i.e, is A E in the closure ? Equivalently, is E in ?



X



X

F

AF
   


Closure of a Set of FDs
  The set of all FDs implied by a given set F of FDs is

called the closure of F and is denoted as F+.

 An important question is how we can infer, or
compute, the closure of a given set F of FDs.

 The following three rules, called Armstrong's
Axioms, can be applied repeatedly to infer all FDs
implied by a set F of FDs.

 We use X, Y, and Z to denote sets of attributes over a
relation schema R:

Closure of a Set of FDs
 Reflexivity: If X Y, then X !Y.

 Augmentation: If X ! Y, then XZ ! YZ for any Z.

 Transitivity: If X ! Y and Y ! Z, then X ! Z.

 Armstrong's Axioms are sound in that they generate
only FDs in F+ when applied to a set F of FDs.

 They are complete in that repeated application of these
rules will generate all FDs in the closure F+.

 It is convenient to use some additional rules while
reasoning about F+:

 Union: If X ! Y and X ! Z, then X !YZ.

 Decomposition: If X ! YZ, then X !Y and X ! Z.

 These additional rules are not essential; their soundness
can be proved using Armstrong's Axioms.

Attribute Closure
  If we just want to check whether a given dependency, say, X → Y,

is in the closure of a set F of FDs,

 we can do so eciently without computing F+. We rst compute the
attribute closure X+ with respect to F,

 which is the set of attributes A such that X → A can be inferred

using the Armstrong Axioms.

 The algorithm for computing the attribute closure of a set X of
attributes is

 closure = X;

 repeat until there is no change: {

 if there is an FD U → V in F such that U subset of closure,

 then set closure = closure union of V

 }

