
Course Name:
Database Management
Systems

Lecture 11
Topics to be covered

 Examples of Relational Algebra and Other Operations

2

Introduction

 This is a procedural query language which consists of set
of operations that take one or two relations as input and
produce a new relation as result.

Division of the Topic

 Set intersection operation

 Natural join

 Division operator

 Assignment operator

 Aggregate functions

Additional Operations

 Additional Operations

 Set intersection

 Natural join

 Aggregation

 Outer Join

 Division

 All above, other than aggregation, can be expressed using
basic operations we have seen earlier

Set-Intersection Operation – Example

 Relation r, s:

 r  s

A B





1
2
1

A B




2
3

r s

A B

 2

Natural Join Operation – Example

 Relations r, s:

A B







1
2
4
1
2

C D







a
a
b
a
b

B

1
3
1
2
3

D

a
a
a
b
b

E







r

A B







1
1
1
1
2

C D







a
a
a
a
b

E







s

n r s

n Notation: r s

Natural-Join Operation

 Let r and s be relations on schemas R and S respectively.
Then, r s is a relation on schema R  S obtained as follows:

 Consider each pair of tuples tr from r and ts from s.

 If tr and ts have the same value on each of the attributes in R  S,
add a tuple t to the result, where

 t has the same value as tr on r

 t has the same value as ts on s

 Example:

R = (A, B, C, D)

S = (E, B, D)

 Result schema = (A, B, C, D, E)

 r s is defined as:

 r.A, r.B, r.C, r.D, s.E (r.B = s.B  r.D = s.D (r x s))

Bank Example Queries
 Find the largest account balance

 Strategy:

 Find those balances that are not the largest

 Rename account relation as d so that we can compare
each account balance with all others

 Use set difference to find those account balances that were
not found in the earlier step.

 The query is:

balance(account) - account.balance

 (account.balance < d.balance (account x rd
(account)))

Aggregate Functions and Operations

 Aggregation function takes a collection of values and returns
a single value as a result.

 avg: average value
 min: minimum value
 max: maximum value
 sum: sum of values
 count: number of values

 Aggregate operation in relational algebra

E is any relational-algebra expression

 G1, G2 …, Gn is a list of attributes on which to group (can be
empty)

 Each Fi is an aggregate function

 Each Ai is an attribute name

)(
)(,,(),(,,, 221121

E
nnn AFAFAFGGG  

Aggregate Operation – Example
 Relation r:

A B

















C

7

7

3

10

n g sum(c) (r) sum(c)

27

n Question: Which aggregate operations cannot be expressed
using basic relational operations?

Aggregate Operation – Example
 Relation account grouped by branch-name:

branch_name g sum(balance) (account)

branch_name account_number balance

Perryridge
Perryridge
Brighton
Brighton
Redwood

A-102
A-201
A-217
A-215
A-222

400
900
750
750
700

branch_name sum(balance)

Perryridge
Brighton
Redwood

1300
1500
700

Aggregate Functions (Cont.)

 Result of aggregation does not have a name

 Can use rename operation to give it a name

 For convenience, we permit renaming as part of aggregate
operation

 branch_name g sum(balance) as sum_balance

(account)

Outer Join

 An extension of the join operation that avoids loss of
information.

 Computes the join and then adds tuples form one relation that
does not match tuples in the other relation to the result of the
join.

 Uses null values:

 null signifies that the value is unknown or does not exist

 All comparisons involving null are (roughly speaking) false by
definition.

 We shall study precise meaning of comparisons with nulls later

Outer Join – Example
 Relation loan

n Relation borrower

customer_name loan_number

Jones
Smith
Hayes

L-170
L-230
L-155

3000
4000
1700

loan_number amount

L-170
L-230
L-260

branch_name

Downtown
Redwood
Perryridge

Outer Join – Example
 Join

loan borrower

loan_number amount

L-170
L-230

3000
4000

customer_name

Jones
Smith

branch_name

Downtown
Redwood

Jones
Smith
null

loan_number amount

L-170
L-230
L-260

3000
4000
1700

customer_name branch_name

Downtown
Redwood
Perryridge

n Left Outer Join

 loan borrower

Outer Join – Example

loan_number amount

L-170
L-230
L-155

3000
4000
null

customer_name

Jones
Smith
Hayes

branch_name

Downtown
Redwood
null

loan_number amount

L-170
L-230
L-260
L-155

3000
4000
1700
null

customer_name

Jones
Smith
null
Hayes

branch_name

Downtown
Redwood
Perryridge
null

n Full Outer Join

 loan borrower

n Right Outer Join

 loan borrower

n Question: can outerjoins be expressed using basic
relational

 algebra operations

Null Values

 It is possible for tuples to have a null value, denoted by null,

for some of their attributes

 null signifies an unknown value or that a value does not

exist.

 The result of any arithmetic expression involving null is null.

 Aggregate functions simply ignore null values (as in SQL)

 For duplicate elimination and grouping, null is treated like

any other value, and two nulls are assumed to be the same

(as in SQL)

Null Values

 Comparisons with null values return the special truth value:
unknown

 If false was used instead of unknown, then not (A < 5)
 would not be equivalent to A >= 5

 Three-valued logic using the truth value unknown:

 OR: (unknown or true) = true,
 (unknown or false) = unknown
 (unknown or unknown) = unknown

 AND: (true and unknown) = unknown,
 (false and unknown) = false,
 (unknown and unknown) = unknown

 NOT: (not unknown) = unknown

 In SQL “P is unknown” evaluates to true if predicate P evaluates
to unknown

 Result of select predicate is treated as false if it evaluates to
unknown

Division Operation
 Notation:

 Suited to queries that include the phrase “for all”.

 Let r and s be relations on schemas R and S

respectively where

 R = (A1, …, Am , B1, …, Bn)

 S = (B1, …, Bn)

The result of r  s is a relation on schema

R – S = (A1, …, Am)

 r  s = { t | t   R-S (r)   u  s (tu  r) }

Where tu means the concatenation of tuples t and u to

produce a single tuple

r  s

