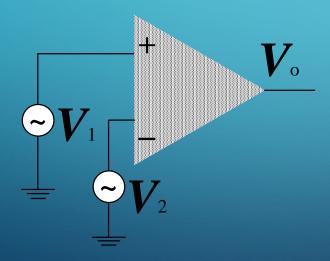
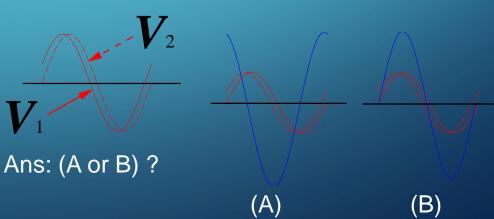
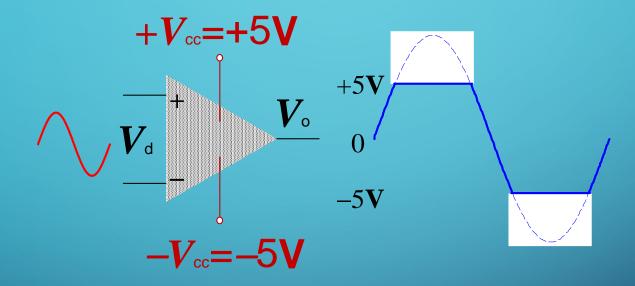

NETWORK THEORY

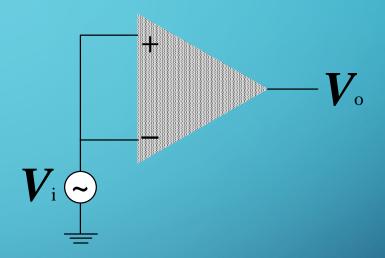

LECTURE 7

SECTION-D:NETWORK SYNTHESIS


DOUBLE-ENDED INPUT


- Differential input
- 0^{V} = V V• 0^{V} phase shift change between V_{o} and V_{d}

Qu: What V_o should be if,


DISTORTION

The output voltage never excess the DC voltage supply of the Op-Amp

COMMON-MODE OPERATION

- Same voltage source is applied at both terminals
- Ideally, two input are equally amplified
- Output voltage is ideally zero due to differential voltage is zero
- Practically, a small output signal can still be measured

Note for differential circuits:

Opposite inputs : highly

amplified

Common inputs: slightly

amplified

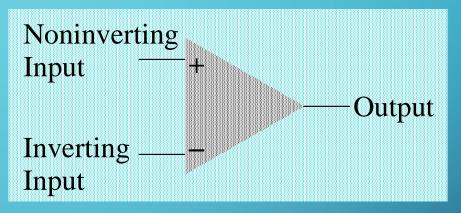
⇒ Common-Mode Rejection

COMMON-MODE REJECTION RATIO (CMRR)

Differential voltage input:

$$V_d = V_+ - V_-$$

Common voltage input:

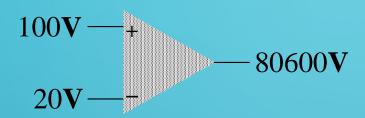

$$V_c = \frac{1}{2}(V_+ + V_-)$$

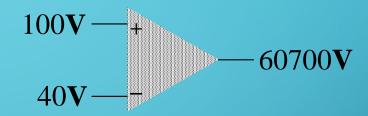
Output voltage:

$$V_o = G_d V_d + G_c V_c$$

G_d: Differential gain

G_c: Common mode gain


Common-mode rejection ratio:


CMRR =
$$\frac{G_d}{G_c}$$
 = $20\log_{10}\frac{G_d}{G_c}$ (dB)

Note: When $G_d >> G_c$ or CMRR $\to \infty$ $\Rightarrow V_o = G_d V_d$

CMRR EXAMPLE

What is the CMRR?

Solution:

$$V_{d1} = 100 - 20 = 80 \mathbf{V}$$

$$V_{c1} = \frac{100 + 20}{2} = 60 \mathbf{V}$$

$$V_{c2} = \frac{100 + 40}{2} = 70 \mathbf{V}$$
(2)

From (1)
$$V_o = 80G_d + 60G_c = 80600V$$

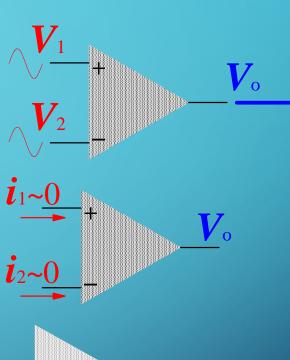
From (2)
$$V_o = 60G_d + 70G_c = 60700V$$

$$G_d = 1000$$
 and $G_c = 10$ \Rightarrow CMRR = $20\log(1000/10) = 40$ dB

NB: This method is Not work! Why?

OP-AMP PROPERTIES

(1) Infinite Open Loop gain


- The gain without feedback
- Equal to differential gain
- Zero common-mode gain
- Pratically, $G_d = 20,000$ to 200,000

(2) Infinite Input impedance

- Input current $i_i \sim 0A$
- $T-\Omega$ in high-grade op-amp
- m-A input current in low-grade op-amp

(3) Zero Output Impedance

- act as perfect internal voltage source
- No internal resistance
- Output impedance in series with load
- Reducing output voltage to the load
- Practically, $R_{\rm out} \sim 20\text{-}100 \ \Omega$

$$V_{\text{o}}$$
 V_{o}
 V_{o}
 R_{load}
 V_{load}
 V_{load}
 V_{load}
 V_{load}