
DISCRETE STRUCTURE



LECTURE-2

COMPOSITION OF FUNCTION AND RELATION



TOPICS COVERED

 Function Composition
 Inverse Functions



Function Composition and Inverse Functions

Inverse of addition:  and -
Inverse of multiplication:  and 1 /

u u
u u

Def :If f:A B, then f is said to be bijective, or to be a
one-to-one correspondence, if f is both one-to-one and onto.
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Function Composition and Inverse Functions
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Function Composition and Inverse Functions
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Function Composition and Inverse Functions
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Function Composition and Inverse Functions
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Function Composition and Inverse  Functions
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Function Composition and Inverse Functions

)(1)()}.(1|),{(

}|),{(}|),{(}|),{(
}+=|),{(=RR:  Ex.

function? a of inverse  thefind  toHow

.f)(g and invertible is :
 thenfunctions, invertible are :,: If  Theorem

onto. and one-to-one isit 
ifonly  and if invertible is :function A  Theorem

1

1-

111-

bx
m

xfbx
m

yyx

bmyxyxbmxyxybmxyyxf
bmxyyxf

gfCAfg
CBgBAf

BAf

c















 



Function Composition and Inverse Functions
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Application & Scope of research

Composition of Functions : Word Problems using 
Composition


