
Section A
Syllabus

NUMERICAL DIFFERENTIATION AND INTEGRATION:- Approximating the

derivative, Numerical differentiation formulas, Introduction to Numerical quadrature,

Newton-Cotes formula, Gaussion Quadrature.

SOLUTION OF NONLINEAR EQUATIONS:- Bracketing methods for locating a root,

S i B

Q g g ,

Initial approximations and convergence criteria, Newton- Raphson and Secant methods,

Solution of problems through a structural programming language such as C or Pascal.

ERRORS IN NUMERICAL CALCULATIONS:-Introduction, Numbers and their accuracy,

Absolute relative and percentage errors and their analysis General error formula

Section B

Absolute, relative and percentage errors and their analysis, General error formula.

INTERPOLATION AND CURVE FITTING:- Taylor series and calculation of functions,

Introduction to interpolation, Lagrange approximation, Newton Polynomials, Chebyshev

Polynomials, Least squares line, curve fitting, Interpolation by spline functions.

Section C

SOLUTION OF LINEAR SYSTEMS:- Direct Methods, Gaussian elimination and

pivoting, Matrix inversion, UV factorization, Iterative methods for linear systems,

Solution of problems through a structured programming language such as C or Pascal.

EIGEN VALUE PROBLEMS:- Jacobi, Given’s and Householder’s methods for symmetric

matrices Rutishauser method for general matrices Power and inverse power methods matrices, Rutishauser method for general matrices, Power and inverse power methods.

Section D
SOLUTION OF DIFFERENTIAL EQUATIONS:- Introduction to differential

ti I iti l l bl E l ’ th d H ’ th d R K ttequations, Initial value problems, Euler’s methods, Heun’s method, Runge-Kutta

methods, Taylor series method, PredictorCorrector methods, Systems of differential

equations, Boundary valve problems, Finite-difference method, Solution of problems

through a structured programming language such as C or Pascal.

PARTIAL DIFFERENTIAL EQUATIONS, EIGENVALUES AND EIGENVECTORS:- Solution of

h b li b li d lli ti ti Th i l bl Th th d d th J bi’ th dhyperbolic, parabolic and elliptic equations, The eigen value problem, The power method and the Jacobi’s method

for eigen value problems, Solution of problems through a structural programming language such as C or Pascal.

SECTION ASECTION A

Approximations and Round-Off Errors

For many engineering problems, we cannot obtain analytical
solutionssolutions.
Numerical methods yield approximate results, results that are
close to the exact analytical solution. We cannot exactly compute
the errors associated with numerical methodsthe errors associated with numerical methods.

Only rarely given data are exact, since they originate from
measurements. Therefore there is probably error in the input
informationinformation.
Algorithm itself usually introduces errors as well, e.g.,
unavoidable round-offs, etc …
The output information will then contain error from both ofThe output information will then contain error from both of
these sources.

How confident we are in our approximate result?
Th ti i “h h i t i l l tiThe question is “how much error is present in our calculation
and is it tolerable?”

A H l i t d d lAccuracy. How close is a computed or measured value
to the true value
Precision (or reproducibility) How close is a computedPrecision (or reproducibility). How close is a computed
or measured value to previously computed or measured
values.
Inaccuracy (or bias). A systematic deviation from the
actual value.
Imprecision (or uncertainty). Magnitude of scatter.

Fi Fig. 1.1

Significant Figures

Number of significant figures indicates precision. Significant digits of a
number are those that can be used with confidence, e.g., the number of f g ,
certain digits plus one estimated digit.

53,800 How many significant figures?

5.38 x 104 3
5.380 x 104 4
5 3800 x 104 55.3800 x 104 5

Zeros are sometimes used to locate the decimal point not significant
figures.g

0.00001753 4
0.0001753 4
0.001753 4

Error DefinitionsError Definitions

True Value = Approximation + ErrorTrue Value Approximation + Error

= True value – Approximation (+/-)E = True value Approximation (+/)

True error

Et

valuetrue
error true error relative fractional True =
valuetrue

%100error true error,relativepercent True t ×=ε %
valuetrue

,p t

For numerical methods, the true value will be known
l h d l h f h b l donly when we deal with functions that can be solved

analytically (simple systems). In real world
applications, we usually not know the answer a priori. pp , y p
Then

%100
ionApproximat
error eApproximat a ×=ε

%100ionapproximat Previous -ion approximatCurrent ×=ε

Iterative approach, example Newton’s method

%100
ionapproximatCurrent

 a ×ε

(+ / -)

Iterative approach, example Newton s method

Use absolute value.
Computations are repeated until stopping criterion is Computations are repeated until stopping criterion is
satisfied.

sa εε 〈 Pre-specified % tolerance based
on the knowledge of your sa 〈 on the knowledge of your
solution

If the following criterion is met

)%10(0.5 n)-(2×=ε

you can be sure that the result is correct to at least n
significant figures

)%10 (0.5s ×ε

significant figures.

Round-off Errors

Numbers such as π, e, or cannot be expressed 7, , p
by a fixed number of significant figures.
Computers use a base-2 representation, they cannot
precisely represent certain exact base-10 numbers.
Fractional quantities are typically represented in
computer using “floating point” form, e.g.,

t

Integer part

em.b exponent

Base of the number system
used

mantissa
used

Figure 1.2

Figure 1.3

Figure 1.4

156.78 0.15678x103 in a floating
i t b 10 tpoint base-10 system

Suppose only 4
029411765.0

34
1 =

Suppose only 4
decimal places to be stored
1

2
1100294.0

34
0 <≤× m

Normalized to remove the leading zeroes. Multiply

2

Normalized to remove the leading zeroes. Multiply
the mantissa by 10 and lower the exponent by 1

0.2941 x 10-1
Additional significant figure g g
is retained

11
<≤

Therefore
for a base-10 system 0.1 ≤m<1

1<≤ m
b

for a base-2 system 0.5 ≤m<1
Floating point representation allows both
fractions and very large numbers to be expressed fractions and very large numbers to be expressed
on the computer. However,

Floating point numbers take up more room.
T k l t th i t bTake longer to process than integer numbers.
Round-off errors are introduced because mantissa
holds only a finite number of significant figures.

17

Interpolation

Taylor’s Series and Interpolation
18

Taylor s Series and Interpolation

Taylor Series interpolates at a specific point:Taylor Series interpolates at a specific point:

The function

Its first derivative

…

It may not interpolate at other points.

We want an interpolant at several f(c)’s.We want an interpolant at several f(c) s.

Basic Scenario

We are able to prod some function, but do not know what

19

p ,
it really is.
This gives us a list of data points: [xi,fi]

f(x)

fi
fi+1

x xxi xi+1

Interpolation & Curve-fitting
20

Often, we have data sets from experimental/observational measurements

Typically, find that the data/dependent variable/output varies…

As the control parameter/independent variable/input varies. Examples:

Classic gravity drop: location changes with time

Pressure varies with depth

Wind speed varies with timeWind speed varies with time

Temperature varies with location

Scientific method: Given data identify underlying relationshipy y g p

Process known as curve fitting:

Interpolation & Curve-fitting
21

Given a data set of n+1 points (xi,yi) identify a function f(x) (theGiven a data set of n+1 points (xi,yi) identify a function f(x) (the

curve), that is in some (well-defined) sense the best fit to the data

Used for:

Identification of underlying relationship (modelling/prediction)

Interpolation (filling in the gaps)

Extrapolation (predicting outside the range of the data)Extrapolation (predicting outside the range of the data)

Interpolation Vs Regression
22

Distinctly different approaches depending on the quality of
the data

Consider the pictures below:

extrapolate

fid

interpolate extrapolate

h h l i hi iPretty confident:
there is a polynomial relationship

Little/no scatter
Want to find an expression

h l h h ll h i

Unsure what the relationship is
Clear scatter

Want to find an expression
that captures the trend:

i i i f h that passes exactly through all the points minimize some measure of the error
Of all the points…

Interpolation
23

Concentrate first on the case where we believe there is no error in the data (and

round-off is assumed to be negligible).

So we have yi=f(xi) at n+1 points x0,x1…xi,…xn: xj > xj-1

(Often but not always evenly spaced)

In general, we do not know the underlying function f(x)

Conceptually, interpolation consists of two stages:

Develop a simple function g(x) that

Approximates f(x)

Passes through all the points xi

Evaluate f(xt) where x0 < xt < xnf(t) 0 t n

Interpolation
24

Clearly the crucial question is the selection of the Clearly, the crucial question is the selection of the

simple functions g(x)

Types are:

Polynomialsy

Splines

T i t i f tiTrigonometric functions

Spectral functions…Rational functions etc…

Curve Approximation
25

We will look at three possible approximations (time We will look at three possible approximations (time

permitting):

l i l i l iPolynomial interpolation

Spline (polynomial) interpolation

Least-squares (polynomial) approximation

If you know your function is periodic, then trigonometric

functions may work better.

Fourier Transform and representationsFourier Transform and representations

Polynomial Interpolation
26

Consider our data set of n+1 points yi=f(xi) at n+1 points p yi f(i) p
x0,x1…xi,…xn: xj > xj-1

In general, given n+1 points, there is a unique polynomial
gn(x) of order n:

That passes through all n+1 points
2

0 1 2() n
n ng x a a x a x a x= + + + +K

Polynomial Interpolation
27

There are a variety of ways of expressing the sameThere are a variety of ways of expressing the same

polynomial

Lagrange interpolating polynomials

Newton’s divided difference interpolating polynomialsNewton s divided difference interpolating polynomials

We will look at both forms

Polynomial Interpolation
28

Existence – does there exist a polynomial that exactlyExistence – does there exist a polynomial that exactly

passes through the n data points?

Uniqueness – Is there more than one such polynomial?

We will assume uniqueness for now and prove it latterWe will assume uniqueness for now and prove it latter.

Lagrange Polynomials
29

Summation of terms, such that:,
Equal to f() at a data
point.

Equal to zero at all nEqual to zero at all
other data points.

Each term is a nth-

()
0

() () ()n i i
i

p x L x f x
=

=∑
degree polynomial ()

()0,

()
n

k
i

k k i i k

x x
L x

x x= ≠

−
=

−∏ (),

1
()

0

i k

i j ij

i j
L x

i j
δ

=⎧
= = ⎨ ≠⎩

Existence!!! 0j j i j≠⎩

Linear Interpolation
30

Summation of two lines:

1

() ()

1

1
0

1 0

() () ()

() ()

i i
i

p x L x f x

x x x x
f f

=

=

− −
+

∑
()
()

()
()

1 0
0 1

0 1 1 0

() ()f x f x
x x x x

= +
− −

Remember this when we
talk about piecewise-

linear splines

x0 x1

p

Lagrange Polynomials
31

2nd Order Case => quadratic polynomialsq p y

The first quadratic has roots at x1

and x2 and a value equal to the
function data
at x

The second quadratic has roots at
x0 and x2 and a value equal to the
function data at x1.

• P(x) = 0

The third quadratic has roots at
x0 and x1 and a value equal to the
function data at x2.

• P(x) = 0

Adding them all together, we get
the interpolating quadratic
polynomial, such that:

• P(x) = fat x0.
• P(x0) = f0

• P(x1) = 0
• P(x2) = 0

• P(x0) = 0
• P(x1) = f1

• P(x2) = 0

• P(x0) = 0
• P(x1) = 0
• P(x2) = f1

• P(x0) = f0

• P(x1) = f1

• P(x2) = f2

x0 x2x1

Lagrange Polynomials
32

Sum must be a unique 2nd order
polynomial through all the data

ipoints.

What is an efficient
implementation?implementation?

Newton Interpolation
33

Newton Interpolation

Consider our data set of n+1 points yi=f(xi) at x0,x1…xi,…xn: xn > x0

Since pn(x) is the unique polynomial pn(x) of order n, write it: pn q p y pn

[]

0 1 0 2 0 1 0 1 1

0 0

1 0
1 1 0

() () ()() ()() ()
()

() (),

n n np x b b x x b x x x x b x x x x x x
b f x

f x f xb f x x

−= + − + − − + + − − −
=

−
= =

K L

[]

[]

1 1 0
1 0

2 1 1 0
2 2 1 0

2 0

,

[,] [,], ,

b f x x
x x
f x x f x xb f x x x

x x

−
−

= =
−

M

[] [] []1 1 0
1 0

0

, , , ,
, , , n n

n n n
n

f x x f x x
b f x x x

x x
−

−

−
= =

−

M

K K
K

f[xi,xj] is a first divided difference
f[x2,x1,x0] is a second divided difference, etc.

Invariance Theorem
34

Note, that the order of the data points does not , p
matter.

All that is required is that the data points are
distinct.

Hence, the divided difference f[x0, x1, …, xk] is
i i t d ll t ti f th ‘invariant under all permutations of the xi‘s.

Linear Interpolation
35

Simple linear interpolation results from having only p p g y
2 data points.

1 0
1 0 0

() ()() () ()f x f xp x f x x x
x x
−

= + −
−1 0x x

slope

x0 x1

Quadratic Interpolation
36

Three data points:p

() ()f f

2 1 1 0

1 0
2 0 0 0 1 2 0 1

1 0

() () () ()

() ()

() ()() () () [, ,]()()

f x f x f x f x

f f

f x f xp x f x x x f x x x x x x x
x x

− −
−

−
= + − + − −

−

⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦2 1 1 0

2 0

1 0

1 0

1 0

0 0 0 1

0 0

() ()

() ()

() () ()()

() ()

x x x x

x x

f x f x
x x

f x f x

f x x x x x x x

f x x x

− −

−

−

−

−

⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦= + − + − −

= + −
1 0

2 1

2 1

() () (

x x

f x f x x x
x x

−

−
−

−
+

1 0
1 0 0 1

1 0

() ()) () () ()f x f xx x x x x x
x x

⎛ ⎞⎛ ⎞ ⎡ ⎤⎡ ⎤ −
− − − −⎜ ⎟⎜ ⎟ ⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦⎝ ⎠ ⎝ ⎠+

2 0x x−

Newton Interpolation
37

Let’s look at the recursion formula:

For the quadratic term:[] [] []1 1 0
1 0

0

, , , ,
, , , n n

n n n
n

f x x f x x
b f x x x

x x
where

−
−

−
= =

−
K K

K

[] ()i if x f x=

[]
1 02 1

2 1 1 0 2 1 1 0

() ()() ()
[,] [,]

f x f xf x f x
f x x f x x x x x xb f

−−
−

− − −[] 2 1 1 0 2 1 1 0
2 2 1 0

2 0 2 0

2 1
1

2 1

[,] [,], ,

() ()

f fb f x x x
x x x x

f x f x b
x x

= = =
− −

−
−

−2 1

2 0x x
=

−

Evaluating for x2
38

() ()()

() ()

2 0 1 2 0 2 2 0 2 1

2 1

()f x b b x x b x x x x

f ff b x x b x x

= + − + − −

⎛ ⎞−
= + + ⎜ ⎟() ()0 1 2 0 1 2 1

2 1

f b x x b x x
x x

= + − + − −⎜ ⎟−⎝ ⎠

()0 1 1 0 2 1f b x x f f= + − + −()

()

0 1 1 0 2 1

1 0
0 1 0 2 1

1 0

f b x x f f

f ff x x f f
x x

+ +

⎛ ⎞−
= + − + −⎜ ⎟−⎝ ⎠

2f=

Example: ln(x)
39

Interpolation of ln(2): given ln(1); ln(4) and ln(6)
Data points: {(1,0), (4,1.3863), (6,1.79176)}
Linear Interpolation: 0 + {(1.3863-0)/(4-1)}(x-1) = 0.4621(x-1)
Quadratic Interpolation: 0.4621(x-1)+((0.20273-0.4621)/5)(x-1)(x-4)Q p 4 () ((73 4)/5)()(4)

= 0.4621(x-1) - 0.051874 (x-1)(x-4)

Note the divergence
for values outside of
the data rangethe data range.

Example: ln(x)
40

Quadratic interpolation catches some of Quadratic interpolation catches some of
the curvature

I th lt h tImproves the result somewhat

Not always a good idea: see later…y g

Calculating the
Divided-Differences

41

A divided-difference table can easily be constructed ff y
incrementally.

Consider the function ln(x).

x ln(x) f[I,I+1] f[I,I+1,…,I+7]x ln(x) f[I,I+1] f[I,I+1,…,I+7]
1 0.000000
2 0.693147 0.693147
3 1.098612 0.405465 -0.143841
4 1.386294 0.287682 -0.058892 0.028317
5 1.609438 0.223144 -0.032269 0.008874 -0.004861
6 1 791759 0 182322 -0 020411 0 003953 -0 001230 0 0007266 1.791759 0.182322 -0.020411 0.003953 -0.001230 0.000726
7 1.945910 0.154151 -0.014085 0.002109 -0.000461 0.000154 -0.000095
8 2.079442 0.133531 -0.010310 0.001259 -0.000212 0.000050 -0.000017 0.000013
x ln(x) b10-b9)/(A10-A9(c10-c9)/(a10-a8)d10-d9)/(a10-a7d10-d9)/(a10-a6e10-e9)/(a10-a5f10-f9)/(a10-a4 (g10-g9)/(a10-a3)

Calculating the
Divided-Differences

42

x ln(x) f[I,I+1] f[I,I+1,…,I+7]x ln(x) f[I,I+1] f[I,I+1,…,I+7]
1 0.000000
2 0.693147 0.693147
3 1.098612 0.405465 -0.143841
4 1.386294 0.287682 -0.058892 0.028317
5 1.609438 0.223144 -0.032269 0.008874 -0.004861
6 1 791759 0 182322 -0 020411 0 003953 -0 001230 0 000726

()
1

1

() ()[. 1] i i

i i

f x f xf i i
x x
+

+

−
+ =

−
6 1.791759 0.182322 -0.020411 0.003953 -0.001230 0.000726
7 1.945910 0.154151 -0.014085 0.002109 -0.000461 0.000154 -0.000095
8 2.079442 0.133531 -0.010310 0.001259 -0.000212 0.000050 -0.000017 0.000013
x ln(x) b10-b9)/(A10-A9(c10-c9)/(a10-a8)d10-d9)/(a10-a7d10-d9)/(a10-a6e10-e9)/(a10-a5f10-f9)/(a10-a4 (g10-g9)/(a10-a3)

()

Calculating the
Divided-Differences

43

x ln(x) f[I,I+1] f[I,I+1,…,I+7]x ln(x) f[I,I+1] f[I,I+1,…,I+7]
1 0.000000
2 0.693147 0.693147
3 1.098612 0.405465 -0.143841
4 1.386294 0.287682 -0.058892 0.028317
5 1.609438 0.223144 -0.032269 0.008874 -0.004861
6 1 791759 0 182322 -0 020411 0 003953 -0 001230 0 000726

[] []
()2

1, 2 , 1
[. 1, 2]

i i

f i i f i i
f i i i

x x+

+ + − +
+ + =

−6 1.791759 0.182322 -0.020411 0.003953 -0.001230 0.000726
7 1.945910 0.154151 -0.014085 0.002109 -0.000461 0.000154 -0.000095
8 2.079442 0.133531 -0.010310 0.001259 -0.000212 0.000050 -0.000017 0.000013
x ln(x) b10-b9)/(A10-A9(c10-c9)/(a10-a8)d10-d9)/(a10-a7d10-d9)/(a10-a6e10-e9)/(a10-a5f10-f9)/(a10-a4 (g10-g9)/(a10-a3)

()2i i+

Calculating the
Divided-Differences

44

[] []1 2 3 1 2f i i i f i i i+ + + + +

x ln(x) f[I I+1] f[I I+1 I+7]

[] []
()3

1, 2, 3 , 1, 2
[, , 3]

i i

f i i i f i i i
f i i

x x+

+ + + − + +
+ =

−
K

x ln(x) f[I,I+1] f[I,I+1,…,I+7]
1 0.000000
2 0.693147 0.693147
3 1.098612 0.405465 -0.143841
4 1.386294 0.287682 -0.058892 0.028317
5 1.609438 0.223144 -0.032269 0.008874 -0.004861
6 1 791759 0 182322 0 020411 0 003953 0 001230 0 0007266 1.791759 0.182322 -0.020411 0.003953 -0.001230 0.000726
7 1.945910 0.154151 -0.014085 0.002109 -0.000461 0.000154 -0.000095
8 2.079442 0.133531 -0.010310 0.001259 -0.000212 0.000050 -0.000017 0.000013
x ln(x) b10-b9)/(A10-A9(c10-c9)/(a10-a8)d10-d9)/(a10-a7d10-d9)/(a10-a6e10-e9)/(a10-a5f10-f9)/(a10-a4 (g10-g9)/(a10-a3)

Calculating the
Divided-Differences

45

[] []1 4 3f i i f i i+ + +

x ln(x) f[I,I+1] f[I,I+1,…,I+7]

[] []
()4

1, , 4 , , 3
[, , 4]

i i

f i i f i i
f i i

x x+

+ + − +
+ =

−
K K

K

x ln(x) f[I,I+1] f[I,I+1,…,I+7]
1 0.000000
2 0.693147 0.693147
3 1.098612 0.405465 -0.143841
4 1.386294 0.287682 -0.058892 0.028317
5 1.609438 0.223144 -0.032269 0.008874 -0.004861
6 1 791759 0 182322 -0 020411 0 003953 -0 001230 0 0007266 1.791759 0.182322 -0.020411 0.003953 -0.001230 0.000726
7 1.945910 0.154151 -0.014085 0.002109 -0.000461 0.000154 -0.000095
8 2.079442 0.133531 -0.010310 0.001259 -0.000212 0.000050 -0.000017 0.000013
x ln(x) b10-b9)/(A10-A9(c10-c9)/(a10-a8)d10-d9)/(a10-a7d10-d9)/(a10-a6e10-e9)/(a10-a5f10-f9)/(a10-a4 (g10-g9)/(a10-a3)

Calculating the
Divided-Differences

46

[] []1 5 4f i i f i i+ + +

x ln(x) f[I,I+1] f[I,I+1,…,I+7]

[] []
()5

1, , 5 , , 4
[, , 5]

i i

f i i f i i
f i i

x x+

+ + − +
+ =

−
K K

K

x ln(x) f[I,I+1] f[I,I+1,…,I+7]
1 0.000000
2 0.693147 0.693147
3 1.098612 0.405465 -0.143841
4 1.386294 0.287682 -0.058892 0.028317
5 1.609438 0.223144 -0.032269 0.008874 -0.004861
6 1 791759 0 182322 -0 020411 0 003953 -0 001230 0 0007266 1.791759 0.182322 -0.020411 0.003953 -0.001230 0.000726
7 1.945910 0.154151 -0.014085 0.002109 -0.000461 0.000154 -0.000095
8 2.079442 0.133531 -0.010310 0.001259 -0.000212 0.000050 -0.000017 0.000013
x ln(x) b10-b9)/(A10-A9(c10-c9)/(a10-a8)d10-d9)/(a10-a7d10-d9)/(a10-a6e10-e9)/(a10-a5f10-f9)/(a10-a4 (g10-g9)/(a10-a3)

Calculating the
Divided-Differences

47

[] []1 6 5f i i f i i+ + +

x ln(x) f[I,I+1] f[I,I+1,…,I+7]

[] []
()6

1, , 6 , , 5
[, , 6]

i i

f i i f i i
f i i

x x+

+ + − +
+ =

−
K K

K

x ln(x) f[I,I+1] f[I,I+1,…,I+7]
1 0.000000
2 0.693147 0.693147
3 1.098612 0.405465 -0.143841
4 1.386294 0.287682 -0.058892 0.028317
5 1.609438 0.223144 -0.032269 0.008874 -0.004861
6 1 791759 0 182322 -0 020411 0 003953 -0 001230 0 0007266 1.791759 0.182322 -0.020411 0.003953 -0.001230 0.000726
7 1.945910 0.154151 -0.014085 0.002109 -0.000461 0.000154 -0.000095
8 2.079442 0.133531 -0.010310 0.001259 -0.000212 0.000050 -0.000017 0.000013
x ln(x) b10-b9)/(A10-A9(c10-c9)/(a10-a8)d10-d9)/(a10-a7d10-d9)/(a10-a6e10-e9)/(a10-a5f10-f9)/(a10-a4 (g10-g9)/(a10-a3)

Calculating the
Divided-Differences

48

Finally, we can calculate the last coefficient.y,

[] []1 7 6f i i f i i+ + +

x ln(x) f[I,I+1] f[I,I+1,…,I+7]

[] []
()7

1, , 7 , , 6
[, , 7]

i i

f i i f i i
f i i

x x+

+ + − +
+ =

−
K K

K

x ln(x) f[I,I+1] f[I,I+1,…,I+7]
1 0.000000
2 0.693147 0.693147
3 1.098612 0.405465 -0.143841
4 1.386294 0.287682 -0.058892 0.028317
5 1.609438 0.223144 -0.032269 0.008874 -0.004861
6 1 791759 0 182322 -0 020411 0 003953 -0 001230 0 0007266 1.791759 0.182322 -0.020411 0.003953 -0.001230 0.000726
7 1.945910 0.154151 -0.014085 0.002109 -0.000461 0.000154 -0.000095
8 2.079442 0.133531 -0.010310 0.001259 -0.000212 0.000050 -0.000017 0.000011
x ln(x) b10-b9)/(A10-A9(c10-c9)/(a10-a8)d10-d9)/(a10-a7d10-d9)/(a10-a6e10-e9)/(a10-a5f10-f9)/(a10-a4 (g10-g9)/(a10-a3)

Calculating the
Divided-Differences

49

Divided Differences

All of the coefficients All of the coefficients
for the resulting
polynomial are in
bold.

x ln(x) f[I,I+1] f[I,I+1,…,I+7]

b0 b4

bx ln(x) f[I,I+1] f[I,I+1,…,I+7]
1 0.000000
2 0.693147 0.693147
3 1.098612 0.405465 -0.143841
4 1.386294 0.287682 -0.058892 0.028317
5 1.609438 0.223144 -0.032269 0.008874 -0.004861
6 1 791759 0 182322 -0 020411 0 003953 -0 001230 0 000726

b
7

6 1.791759 0.182322 -0.020411 0.003953 -0.001230 0.000726
7 1.945910 0.154151 -0.014085 0.002109 -0.000461 0.000154 -0.000095
8 2.079442 0.133531 -0.010310 0.001259 -0.000212 0.000050 -0.000017 0.000011
x ln(x) b10-b9)/(A10-A9(c10-c9)/(a10-a8)d10-d9)/(a10-a7d10-d9)/(a10-a6e10-e9)/(a10-a5f10-f9)/(a10-a4 (g10-g9)/(a10-a3)

Polynomial Form for Divided-
Differences

50

The resulting polynomial comes from the divided-g p y
differences and the corresponding product terms:

()7 0p x =

()
()()
()() ()

0.693 1

0.144 1 2

0.28 1 2 3

x

x x

x x x

+ −

− − −

+ − − −

()()()()
()()()() ()
()()()() ()()

4

5

0.0049 1 2 3 4

7.26 10 1 2 3 4 5

9.5 10 1 2 3 4 5 6

x x x x

x x x x x

x x x x x x

−

−

− − − − −

+ • − − − − −

− • − − − − − −

()()()()()() ()51.1 10 1 2 3 4 5 6 7x x x x x x x−+ • − − − − − − −

Many polynomials
51

Note, that the order of the numbers (xi,yi)’s only , (i,yi) y
matters when writing the polynomial down.

The first column represents the set of linear splines between
two adjacent data pointstwo adjacent data points.

The second column gives us quadratics thru three adjacent
points.

Etc.

Adding an Additional Data Point
52

Adding an additional data point, simply adds an g p , p y
additional term to the existing polynomial.

Hence, only n additional divided-differences need to be
l l d f h st d icalculated for the n+1st data point.

x ln(x) f[I,I+1] f[I,I+1,…,I+7]x ln(x) f[I,I+1] f[I,I+1,…,I+7]
1.0000000 0.0000000
2.0000000 0.6931472 0.6931472
3.0000000 1.0986123 0.4054651 -0.1438410
4.0000000 1.3862944 0.2876821 -0.0588915 0.0283165
5.0000000 1.6094379 0.2231436 -0.0322693 0.0088741 -0.0048606
6 0000000 1 7917595 0 1823216 -0 0204110 0 0039528 -0 0012303 0 0007261

b
8

6.0000000 1.7917595 0.1823216 -0.0204110 0.0039528 -0.0012303 0.0007261
7.0000000 1.9459101 0.1541507 -0.0140854 0.0021085 -0.0004611 0.0001539 -0.0000954
8.0000000 2.0794415 0.1335314 -0.0103096 0.0012586 -0.0002125 0.0000497 -0.0000174 0.0000111
1.5000000 0.4054651 0.2575348 -0.0225461 0.0027192 -0.0004173 0.0000819 -0.0000215 0.0000082 -0.0000058

Adding More Data Points
53

Quadratic interpolation:
does linear interpolation
Then add higher-order correction to catch the curvature

C bi Cubic, …
Consider the case where the data points are
organized such the the first two are the endpoints organized such the the first two are the endpoints,
the next point is the mid-point, followed by
successive mid-points of the half-intervals.

Worksheet: f(x)=x2 from -1 to 3.

Uniqueness
54

Suppose that two polynomials of degree n (or less) pp p y g ()
existed that interpolated to the n+1 data points.

Subtracting these two polynomials from each other
also leads to a polynomial of at most n degree.

() () ()n n nr x p x q x= −

Uniqueness
55

Since p and q both interpolate the n+1 data points,p q p p ,

This polynomial r, has at least n+1 roots!!!

This can not be! A polynomial of degree-n can only p y g y
have at most n roots.

() ()
n

∏Therefore, r(x) ≡ 0
1

1

() ()

() ()

n n i
i

n

p x a x r

p x a x r

=

+

= −

= −

∏

∏1 1
1

() ()n n i
i

p x a x r+ +
=

= ∏

Example
56

Suppose f was a polynomial of degree m, where m<n.pp f p y g ,

Ex: f(x) = 3x-2

We have evaluations of f(x) at five locations: (-2,-8), f() (,),
(-1,-5), (0,-2), (1,1), (2,4)

Error
57

Define the error term as:

If f(x) is an nth order polynomial p (x) is of course exact

() () ()n nx f x p xε = −

If f(x) is an nth order polynomial pn(x) is of course exact.
Otherwise, since there is a perfect match at x0, x1,…,xn

This function has at least n+1 roots at the interpolation
points.

0 1() ()() () ()n nx x x x x x x h xε∴ = − − −L

Interpolation Errors
58

() ()(1)1() () ()
n

n
n n ix f x p x f x xε ξ+= − = −∏() ()

()
0

() () ()
(1)!

[,], ,

n n i
i

f p f
n

x a b a b

ξ

ξ
=+

∈ ∈

∏

Proof is in the book.

Intuitively, the first n+1 terms of the Taylor Series is

()[,], ,ξ

y, y
also an nth degree polynomial.

Interpolation Errors
59

Use the point x, to expand the polynomial.

0 1{ , , }n
n

x x x x∉ K

()0 1
0

() () () [, , ,]n n n i
i

x f x p x f x x x x x xε
=

= − = −∏K

Point is, we can take an arbitrary point x, and create
an (n+1)th polynomial that goes thru the point xan (n+1) polynomial that goes thru the point x.

Interpolation Errors
60

Combining the last two statements, we can also get a
feel for what these divided differences represent.

()()
0 1

1[, ,]
!

n
nf x x x f

n
ξ=K

Corollary 1 in book – If f(x) is a polynomial of degree
m<n then all (m+1)st divided differences and higher m<n, then all (m+1) divided differences and higher
are zero.

Problems with Interpolation
61

Is it always a good idea to use higher and higher
order polynomials?

Certainly not: 3 4 points usually good: 5 6 ok:Certainly not: 3-4 points usually good: 5-6 ok:

See tendency of polynomial to “wiggle”

Particularly for sharp edges: see figures

Chebyshev nodes
62

Equally distributed points may not be the optimal q y p y p
solution.

If you could select the xi’s, what would they be?

Want to minimize the term.

These are the Chebyshev nodes.
For x=-1 to 1:

()
0

n

i
i

x x
=

−∏

cos (0)ix i nπ⎡ ⎤⎛ ⎞= ≤ ≤⎜ ⎟⎢ ⎥cos , (0)ix i n
n

π= ≤ ≤⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Chebyshev nodes
63

Let’s look at these for n=4.4

Spreads the points out in
the center.

0
0cos 1
4

x π⎡ ⎤⎛ ⎞= =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤
1

1 2cos 0.707
4 2

2

x π⎡ ⎤⎛ ⎞= = ≈⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞2cos 0

4

3 2cos 0 707

x

x

π

π

⎡ ⎤⎛ ⎞= =⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

⎡ ⎤⎛ ⎞
⎜ ⎟⎢ ⎥3

4

cos 0.707
4 2

4cos 1
4

x

x

π

π

= = − ≈ −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
⎡ ⎤⎛ ⎞= = −⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

4 4⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

Polynomial Interpolation in
Two-Dimensions

64

Consider the case in higher-dimensions.g

Finding the Inverse of a Function
65

What if I am after the inverse of the function f(x)?f()
For example arccos(x).

Simply reverse the role of the xi and the fi.

Section B

Solving Non-Linear Equations

(Root Finding)(g)

Root finding Methods

What are root finding methods?g

Methods for determining a solution of an equation.

Essentially finding a root of a function, that is, a zero y g , ,
of the function.

Root finding Methods

Where are they used?y

Some applications for root finding are: systems of
equilibrium, elliptical orbits, the van der Waals
equation, and natural frequencies of spring systems.

The problem of solving non-linear equations or sets
f li ti i bl i of non-linear equations is a common problem in

science, applied mathematics.

Cont...

The problem of solving non-linear equations or
sets of non-linear equations is a common

bl i i li d h iproblem in science, applied mathematics.

The goal is to solve f(x) = 0 , for the function
f()f(x).

The values of x which make f(x) = 0 are the
roots of the equation roots of the equation.

Cont...

f(x)

a,b are roots of the
function f(x)

f(a)=0 f(b)=0

x

() ()

There are many methods for solving non-linear
equations. The methods, which will be
highlighted have the following properties:
the f nction f() is e pected to be contin o s If 1. the function f(x) is expected to be continuous. If
not the method may fail.

2 the use of the algorithm requires that the 2. the use of the algorithm requires that the
solution be bounded.

3. once the solution is bounded, it is refined to
specified tolerance.

Cont...

Four such methods are:

Interval Halving (Bisection method)

Regula Falsi (False position)g (p)

Secant method

Fixed point iterationp

Newton’s method

Bisection Method

It is the simplest root-
finding algorithm.

Requires previous
knowledge of two initial

 d b h
initial pt ‘b’

 d guesses, a and b, so that
f(a) and f(b) have
opposite signs root ‘d’

a
c b

d

opposite signs.
initial pt ‘a’

Bisection Method

Two estimates are
chosen so that the
solution is bracketed. ie
f(a) and f(b) have
opposite signs

initial pt ‘b’

 d opposite signs.

In the diagram this
f(a) < 0 and f(b) > 0 root ‘d’

a
c b

d

f(a) < 0 and f(b) > 0.

The root d lies
between a and b!

initial pt ‘a’

between a and b!

Bisection Method

The root d must
always be bracketed
(be between a and
b)!

i h d
initial pt ‘b’

 d Iterative method.

root ‘d’

a
c b

d

initial pt ‘a’

Bisection Method

The interval between a
and b is halved by
calculating the average
of a and b.

h i
initial pt ‘b’

 d The new point c =
(a+b)/2.

Thi d t
root ‘d’

a
c b

d

This produces are two
possible intervals: a < x
< c and c < x < b

initial pt ‘a’

< c and c < x < b.

Bisection Method

This produces are two
possible intervals: a < x
< c and c < x < b.

If f(c) > 0, then x = d
 b h l f f

initial pt ‘b’

 d must be to the left of c
:interval a < x < c.

If f() th d
root ‘d’

a
c b

d

If f(c) < 0, then x = d
must be to the right of c
:interval c < x < b

initial pt ‘a’

:interval c < x < b.

Bisection Method

If f(c) > 0, let anew = a
and bnew = c and repeat
process.

If f(c) < 0, let anew = c
d b b d

initial pt ‘b’

 d and bnew = b and repeat
process.
This reassignment

root ‘d’

a
c b

d

This reassignment
ensures the root is
always bracketed!!

initial pt ‘a’

Bisection Method

This produces are two
possible intervals: a < x
< c and c < x < b.

If f(c) > 0, then x = d
 b h l f f

initial pt ‘b’

 d must be to the left of c
:interval a < x < c.

If f() th d
root ‘d’

a
c b

d

If f(c) < 0, then x = d
must be to the right of c
:interval c < x < b

initial pt ‘a’

:interval c < x < b.

Bisection Method

ci = (ai + bi)/2i (i i)/

if f(ci) > 0; ai+1 = a and bi+1 = c

if f(ci) < 0; ai+1 = c and bi+1 = b(i) ; i+1 i+1

Bisection Method

Bisection is an iterative
process, where the initial
interval is halved until the
size of the interval
decreases until it is below decreases until it is below
some predefined tolerance
ε: |a-b| ≥ ε or f(x) falls

δ

ε: |a b| ≥ ε or f(x) falls
below a tolerance δ: |f(c)
– f(c-1)| ≤ δ.

ε

Bisection Method

Advantagesg

1. Is guaranteed to work if f(x) is continuous and the
root is bracketed.

2. The number of iterations to get the root to
specified tolerance is known in advance

Bisection Method

Disadvantagesg

1. Slow convergence.

2. Not applicable when here are multiple roots. Will pp p
only find one root at a time.

Secant Method

Overview of Secant MethodOverview of Secant Method

Again to initial guesses
are chosen.
However there is not However there is not
requirement that the
root is bracketed!
The method proceeds The method proceeds
by drawing a line
through the points to
get a new point closer get a new point closer
to the root.
This is repeated until
h f dthe root is found.

Secant MethodSecant Method

First we find two
points(x0,x1), which
are hopefully near the
root (we may use the
bisection method) bisection method).

A line is then drawn
through the two points through the two points
and we find where the
line intercepts the x-p
axis, x2.

Secant MethodSecant Method

If f(x) were truly
linear, the straight line
would intercept the x-
axis at the root.

 i i i However since it is not
linear, the intercept is
not at the root but it not at the root but it
should be close to it.

Secant MethodSecant Method

From similar triangles From similar triangles
we can write that,

()
()

()
() ()10

10

1

21

xfxf
xx

xf
xx

−
−

=
−

()xf
()0xf

1x 0x2x

()1xf

1x 0x2x

Secant Method

From similar triangles From similar triangles
we can write that,

Solving for x2 we get:

()
()

()
() ()10

10

1

21

xfxf
xx

xf
xx

−
−

=
−

Solving for x2 we get:

() ()10 xxf −() ()
() ()10

10
112 xfxf

xfxx
−

−=

Secant Method

Iteratively this is Iteratively this is
written as:

()() ()
() ()nn

nn
nnn xfxf

xxxfxx
−
−

−=
−

−
+

1

1
1

Algorithm

Given two guesses x0, x1 near the root,

If then() ()10 xfxf <

Swap x0 and x1.

Repeat

() ()10 ff

p

Set

Set x0 = x1

() () ()10

10
112 *

xfxf
xxxfxx

−
−

−=

Set x0 x1

Set x1 = x2

Until < tolerance value ()xfUntil < tolerance value. ()2xf

Cont...

Because the new point should be closer the root after p
the 2nd iteration we usually choose the last two
points.

After the first iteration there is only one new point.
However x1 is chosen so that it is closer to root that
xx0.

This is not a “hard and fast rule”!

False Position

False Position

The method of false position is seen as an p
improvement on the secant method.

The method of false position avoids the problems of
the secant method by ensuring that the root is
bracketed between the two starting points and
remains bracketing between successive pairs remains bracketing between successive pairs.

False Position

This technique is similar to the bisection method q
except that the next iterate is taken as the line of
interception between the pair of x-values and the x-

i th th t th id i t axis rather than at the midpoint.

False Position

Algorithm

Given two guesses x0, x1 that bracket the root,

Repeat

Set

If is of opposite sign to then

() () ()10

10
112 *

xfxf
xxxfxx

−
−

−=

()2xf ()0xfpp g

Set x1 = x2

Else Set x0 = x10 1

End If

Until < tolerance value. ()2xfUntil < tolerance value. ()2f

Discussion of False Position Method

This method achieves better convergence but a more g
complicated algorithm.

May fail if the function is not continuous.

Newton’s Method

The bisection method is useful up to a point. p p

In order to get a good accuracy a large number of
iterations must be carried out.

A second inadequacy occurs when there are multiple
roots to be found.

Newton’s Method

The bisection method is useful up to a point. p p

In order to get a good accuracy a large number of
iterations must be carried out.

A second inadequacy occurs when there are multiple
roots to be found.

Newton’s method is a much better algorithm.

Newton’s Method

Newton’s method relies on calculus and uses linear
approximation to the function by finding the tangent
to the curve.

Newton’s Method

Algorithm requires an
initial guess, x0, which is
close to the root. close to the root.
The point where the
tangent line to the
function (f (x)) meets function (f (x)) meets
the x-axis is the next
approximation, x1.
Thi d i This procedure is
repeated until the value
of ‘x’ is sufficiently close
t to zero.

Newton’s Method

The equation for
Newton’s Method
can be determined
graphically!

Newton’s Method

The equation for
Newton’s Method can
be determined
graphically!

 h di From the diagram tan
Ө = ƒ'(x0) = ƒ(x0)/(x0 –
x) x1)

Newton’s Method

The equation for
Newton’s Method can
be determined be determined
graphically!
From the diagram tan From the diagram tan
Ө = ƒ'(x0) = ƒ(x0)/(x0 –
x1)

Thus, x1=x0 -
ƒ(x)/ƒ'(x) ƒ(x0)/ƒ (x0).

Newton’s Method

The general form of
Newton’s Method is:

xn+1 = xn – f(xn)/ƒ'(xn)

Newton’s Method

The general form of
Newton’s Method is:

xn+1 = xn – f(xn)/ƒ'(xn)

Algorithm
Pick a starting value for x

Repeat

x:= x – f(x)/ƒ'(x)

Return x

Numerical Differentiation and Integration

Standing in the heart of calculus are the mathematical concepts
f d ff dof differentiation and integration:

−Δ+
=

Δ ii xfxxfy)()(

Δ
−Δ+

=

ΔΔ

Δ
ii

x x
xfxxf

dx
dy

xx
)()(lim0

∫=
Δ

b

dxxfI

xdx

)(
a

Figure 4 1Figure 4.1

Figure 4.2

Noncomputer Methods for Differentiation
and Integration

The function to be differentiated or integrated will
typically be in one of the following three forms:

A simple continuous function such as polynomial, an exponential, or
a trigonometric function.g
A complicated continuous function that is difficult or impossible to
differentiate or integrate directly.
A tabulated function where values of x and f(x) are given at aA tabulated function where values of x and f(x) are given at a
number of discrete points, as is often the case with experimental or
field data.

Figure 4.3

Figure 4.4

Newton-Cotes Integration Formulas

The Newton-Cotes formulas are the most commonThe Newton Cotes formulas are the most common
numerical integration schemes.

They are based on the strategy of replacing a
complicated function or tabulated data with an p
approximating function that is easy to integrate:

bb

∫∫
nn

a
n

a

xaxaxaaxf

dxxfdxxfI

++++=

≅=

−

∫∫
1)(

)()(

L nnn xaxaxaaxf ++++= −110)(L

Figure 4.5

Figure 4.6

The Trapezoidal RuleThe Trapezoidal Rule

The Trapezoidal rule is the first of the Newton-Cotes
closed integration formulas, corresponding to the case
where the polynomial is first order:

∫∫ ≅=
bb

dxxfdxxfI)()(1

The area under this first order polynomial is an
estimate of the integral of f(x) between the limits of a

aa

estimate of the integral of f(x) between the limits of a
and b:

)()()(bfafbI +
2

)()()(ffabI −= Trapezoidal rule

Figure 4.7

Error of the Trapezoidal Rule/Error of the Trapezoidal Rule/

When we employ the integral under a straight lineWhen we employ the integral under a straight line
segment to approximate the integral under a curve,
error may be substantial:error may be substantial:

3))((1 abfEt −′′−= ξ

where ξ lies somewhere in the interval from a to b

))((
12

abfEt ξ

where ξ lies somewhere in the interval from a to b.

The Multiple Application Trapezoidal RuleThe Multiple Application Trapezoidal Rule

One way to improve the accuracy of the trapezoidal rule is to y p y p
divide the integration interval from a to b into a number of
segments and apply the method to each segment.
The areas of indi id al segments can then be added to ield theThe areas of individual segments can then be added to yield the
integral for the entire interval.

==
−

= xbxaabh

∫∫∫ +++=

===

nxxx

n

dxxfdxxfdxxfI

xbxa
n

h

21

)()()(

0

L

Substituting the trapezoidal rule for each integral yields:

−nxxx 110

)()()()()()(ffffff
2

)()(
2

)()(
2

)()(12110 nn xfxfhxfxfhxfxfhI +
++

+
+

+
= −L

Figure 4.8

Simpson’s Rules

More accurate estimate of an integral is obtained if a high-
order polynomial is used to connect the points. The
formulas that result from taking the integrals under such
polynomials are called Simpson’s rulespolynomials are called Simpson s rules.

Simpson’s 1/3 Rule/p
Results when a second-order interpolating polynomial is
used.

Figure 4.9

b b

∫ ∫)()(2

b

dxxfdxxfI
a a

≅= ∫ ∫

)(
))((

))(()(
))((

))(()(
))((

))((
2

1202

10
1

2101

20
0

2010

21

20

2

0

dxxf
xxxx

xxxxxf
xxxx

xxxxxf
xxxx

xxxxI

xbxa
x

x
⎥
⎦

⎤
⎢
⎣

⎡
−−
−−

+
−−
−−

+
−−
−−

=

==

∫

[]
2

)()(4)(
3 210

abhxfxfxfhI −
=++≅

3

Simpson’s 1/3 Rule

S ti CSection C

Solution of linear system of equations
126

Circuit analysis (Mesh and node equations)y (q)

Numerical solution of differential equations (Finite
Difference Method)

Numerical solution of integral equations (Finite
Element Method, Method of Moments)

nn

b
bxaxaxa =+++ L 11212111

⎥
⎤

⎢
⎡

⎥
⎤

⎢
⎡
⎥
⎤

⎢
⎡ n

b
bxaaa L 1111211

nn

b

bxaxaxa

+++

=+++
M

L 22222121

⎥
⎥
⎥
⎥

⎦
⎢
⎢
⎢
⎢

⎣

=

⎥
⎥
⎥
⎥

⎦
⎢
⎢
⎢
⎢

⎣
⎥
⎥
⎥
⎥

⎦
⎢
⎢
⎢
⎢

⎣

n

b

b

x

x

aaa

aaa
MMMOMM

L 2222221
⇒

nnnnnn bxaxaxa =+++ L2211 ⎦⎣⎦⎣⎦⎣ nnnnnn bxaaa L21

Consistency (Solvability)
127

The linear system of equations Ax=b has a solution, y q ,
or said to be consistent IFF

Rank{A}=Rank{A|b}

A system is inconsistent when

Rank{A}<Rank{A|b}

Rank{A} is the maximum number of linearly independent columns
or rows of A. Rank can be found by using ERO (Elementary Row
Oparations) or ECO (Elementary column operations).

ERO # f ith t l t tERO⇒# of rows with at least one nonzero entry
ECO⇒# of columns with at least one nonzero entry

Solution Techniques
128

Direct solution methodsDirect solution methods
Finds a solution in a finite number of operations by
transforming the system into an equivalent system that is
‘ i ’ t l ‘easier’ to solve.
Diagonal, upper or lower triangular systems are easier to
solve

b f i i f i f iNumber of operations is a function of system size n.

Iterative solution methods
Computes succesive approximations of the solution vector Computes succesive approximations of the solution vector
for a given A and b, starting from an initial point x0.
Total number of operations is uncertain, may not converge.

Direct solution Methods
129

Gaussian Elimination
By using ERO, matrix A is transformed into an upper
triangular matrix (all elements below diagonal 0)

Back substitution is used to solve the upper triangular systemBack substitution is used to solve the upper-triangular system

n

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡ ni

b

bxaaa
MMMMOM

LL 111111

⇒ ⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡ ni

b

bxaaa

~~~0

111111

MMMMOM

LL

st
it

u
ti

on

⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢

⎣

=

⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢

⎣⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢

⎣ n

i

n

i

nnnin

iniii

b

b

x

x

aaa

aaa
MM

LL

MOMM

LL

1

1
⇒

ERO
⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢

⎣

=

⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢

⎣⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢

⎣ n

i

n

i

nn

inii

b

b

x

x

a

aa

~~00

0
MM

LL

MOMM

LL

ac
k 

su
bs

B
a



First step of elimination
130

⎤⎡⎤⎡⎤⎡ )1()1()1()1()1( bxaaaaPi t l l t

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

=
⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

)1(
3

)1(
2

)(
1

3

2

1

)1(
3

)1(
33

)1(
32

)1(
31

)1(
2

)1(
23

)1(
22

)1(
21

)(
1

)(
13

)(
12

)(
11

n

n

n

b
b
b

x
x
x

aaaa
aaaa
aaaa

L

L

LPivotal element

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣
)1()1()1(

3
)1(

2
)1(

1 nnnnnnn bxaaaa
MM

L

MOMMM

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

= )2(
2

)1(
1

2

1
)2(

2
)2(

23
)2(

22

)1(
1

)1(
13

)1(
12

)1(
11

)()(

)1(
11

)1(
211,2 0/ n

n

b
b

x
x

aaa
aaaa

aam L

L

⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢

⎣

=

⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢

⎣⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢

⎣=

=

)2(

)2(
33

)2()2()2(

)2(
3

)2(
33

)2(
32

)1()1(

)1(
11

)1(
311,3

0

0

/

/ n

b

b

x

x

aaa

aaa

aam

aam
MM

L

MOMMM

L

M

⎥⎦⎢⎣⎥⎦⎢⎣⎥⎦⎢⎣= 321111, 0/ nnnnnnnn bxaaaaam L



Second step of elimination
131

⎤⎡⎤⎡

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

)2(

)2(
2

)1(
1

2

1

)2()2()2(

)2(
2

)2(
23

)2(
22

)1(
1

)1(
13

)1(
12

)1(
11

0
0 n

n

b
b
b

x
x
x

aaa
aaa
aaaa

L

L

Pivotal element

⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢

⎣

=

⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢

⎣⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢

⎣
)2(

)(
33

)2()2(
3

)2(
2

)(
3

)(
33

)(
32

0

0

nnnnnn

n

b

b

x

x

aaa

aaa
MM

L

MOMMM

L

⎥
⎥
⎤

⎢
⎢
⎡

⎥
⎥
⎤

⎢
⎢
⎡

⎥
⎥
⎤

⎢
⎢
⎡

)2(
2

)1(
1

2

1
)2(

2
)2(

23
)2(

22

)1(
1

)1(
13

)1(
12

)1(
11

0
n

b
b

x
x

aaa
aaaa

L

L

⎦⎣⎦⎣⎦⎣ 32 nnnnnn

⎥
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢

=

⎥
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢

⎥
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢

= )3(
3

2

3

2
)3(

3
)3(

33

22322
)2(

22
)2(

322,3 00
0

/ n

n

b
b

x
x

aa
aaa

aam
MMMOMMM

L

M

⎥⎦⎢⎣⎥⎦⎢⎣⎥⎦⎢⎣= )3()3()3(
3

)2(
22

)2(
22, 00/ nnnnnnn bxaaaam L



Gaussion elimination algorithm
132

/ )()(
, = p

pp
p

rppr aam

0)( =p
rpa

)()()1( ppp bmbb ×−=+

For c=p+1 to n

)()()1( ppp+

, pprrr bmbb ×=

)(
,

)()1( p
pcpr

p
rc

p
rc amaa ×−=+



Back substitution algorithm
133

⎤⎡⎤⎡⎤⎡ )1()1()1()1()1( bxaaaa

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎡

)3(
3

)2(
2

)(
1

3

2

1

)3(
3

)3(
33

)2(
2

)2(
23

)2(
22

)(
1

)(
13

)(
12

)(
11

00
0

n

n

n

b
b
b

x
x
x

aa
aaa
aaaa

L

L

L

⎥
⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢
⎢

⎣

=

⎥
⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢
⎢

⎣⎥
⎥
⎥
⎥
⎥

⎦⎢
⎢
⎢
⎢
⎢

⎣

−
−−−−−

)(

)1(
1

3

1
)(

)(
1

)(
11

333

0000
000

n

n
nn

n

n
nn

n
nn

n

b
bxaa

MMMOMMM

⎥⎦⎢⎣⎥⎦⎢⎣⎥⎦⎢⎣
)()(0000 n

nn
n

nn bxa

[ ]1 1)1(
)(

−== −− xabxbx nn
n

n [ ]

1211 )()(

11)1(
11

1)(

−−=⎥
⎤

⎢
⎡

−=

==

∑

−−−
−−

−

nnixabx

xab
a

x
a

x

n
ii

nnnnn
nn

nn
nn

n

1,,2,1
1

)( K=⎥
⎦

⎢
⎣

= ∑
+=

nnixab
a

x
ik

kikii
ii

i



Operation count
134

Number of arithmetic operations required by the 
algorithm to complete its task.
Generally only multiplications and divisions are 
counted counted 
Elimination process 

6
5

23

23 nnn
−+

Back substitution
623

2

2 nn + Dominates
ff f

Total 2
2

3 nnn
−+

Not efficient for
different RHS vectors

33
n+



LU Decomposition
135

A=LU

Ax=b ⇒LUx=b

Define Ux=yy

Ly=b Solve y by forward substitution

ERO’s must be performed on b as well as AERO s must be performed on b as well as A

The information about the ERO’s are stored in L

Indeed y is obtained by applying ERO’s to b vectorIndeed y is obtained by applying ERO s to b vector

Ux=y Solve x by backward substitution



LU Decomposition by Gaussian elimination
136

There are infinitely many different ways to decompose AThere are infinitely many different ways to decompose A.
Most popular one: U=Gaussian eliminated matrix

L=Multipliers used for elimination

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

)3()3(

)2(
2

)2(
23

)2(
22

)1(
1

)1(
13

)1(
12

)1(
11

1,2 0
001
0001
00001

n

n

aaa
aaaa

m L

L

L

L

⎥
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢

⎥
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢

=

)(
1

)(
11

)3(
3

)3(
33

312111

2,31,3

000

00

1
0
001

nn

n

aa

aa

mmm

mm
A

MOMMM

L

ML

MOOMM

L

⎥
⎥
⎦⎢

⎢
⎣⎥
⎥
⎦⎢

⎢
⎣

−−−−−−

)(
111

4,3,2,1,

3,12,11,1

0000
000

1
1

n
nn

nnnn

nnnn

nnn

a
aa

mmmm
mmm

L

M

Compact storage: The diagonal entries of L matrix are all 1’s, Compact storage: The diagonal entries of L matrix are all 1 s, 
they don’t need to be stored. LU is stored in a single matrix.



Operation count
137

A LU Decomposition 
3 nn Done only once

A=LU Decomposition 

Ly=b  forward substitution
33
nn

−
2 nn −

y

y

Ux=y  backward substitution 2 nn +
2

nn

Total 
2

33
2

3 nnn
−+

For different RHS vectors, the system can be 
efficiently solved.

33



Pivoting
138

Computer uses finite-precision arithmeticp f p

A small error is introduced in each arithmetic 
operation, error propagates

When the pivotal element is very small, the 
multipliers will be large.

Adding numbers of widely differening magnitude 
can lead to loss of significance.

T  d    i h   d   To reduce error, row interchanges are made to 
maximise the magnitude of the pivotal element



Example: Without Pivoting
139

⎤⎡⎤⎡⎤⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡
− 93.22

414.6
210.114.24

281.5133.1

2

1

x
x

4-digit arithmetic
⎦⎣⎦⎣⎦⎣

⎥
⎤

⎢
⎡

⎥
⎤

⎢
⎡
⎥
⎤

⎢
⎡ 414.6281.5133.1 1x

312114.24
⎥
⎦

⎢
⎣−

=⎥
⎦

⎢
⎣
⎥
⎦

⎢
⎣ − 8.1137.113000.0 2

1

x
31.21

133.1
.

21 ==m

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
001.1
9956.0

2

1

x
x

Loss of significance
⎦⎣⎦⎣ 001.12x



Example: With Pivoting
140

⎤⎡⎤⎡⎤⎡
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
⎥
⎦

⎤
⎢
⎣

⎡ −
414.6

93.22
281.5133.1
210.114.24

2

1

x
x

⎦⎣⎦⎣⎦⎣

⎥
⎤

⎢
⎡

⎥
⎤

⎢
⎡
⎥
⎤

⎢
⎡ − 93.22210.114.24 1x

046930133.1
⎥
⎦

⎢
⎣

=⎥
⎦

⎢
⎣
⎥
⎦

⎢
⎣ 338.5338.5000.0 2

1

x
04693.0

14.24
33.

21 ==m

⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
000.1
000.1

2

1

x
x

⎦⎣⎦⎣ 000.12x



Pivoting procedures
141

⎤⎡ )1()1()1()1()1()1(

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

)3()3()3()3(

)2(
2

)2(
2

)2(
2

)2(
23

)2(
22

)1(
1

)1(
1

)1(
1

)1(
13

)1(
12

)1(
11

00
0 nji

nji

aaaaa
aaaaaa

LLL

LLL

⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢

)()()(

)3(
3

)3(
3

)3(
3

)3(
33

000

00

iii

nji

aaa

aaaa
MOMOMOMMM

LLL
Eliminated

part Pivotal 

⎥
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢

)()()(

)()()(

000

000

iii

inijii

aaa

aaa
MOMOMOMMM

LLL Pivotal 
row

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣
)()()(

)()()(

000

000

iii

jnjjji

aaa

aaa

LLL

MOMOMOMMM

LLL

⎦⎣ 000 nnnjni aaa LLL

Pivotal column



Row pivoting
142

Most commonly used partial pivoting procedureMost commonly used partial pivoting procedure

Search the pivotal column

Find the largest element in magnitude

Th  i h hi   i h h  i l Then switch this row with the pivotal row



Row pivoting
143

⎤⎡ )1()1()1()1()1()1(

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

)3()3()3()3(

)2(
2

)2(
2

)2(
2

)2(
23

)2(
22

)1(
1

)1(
1

)1(
1

)1(
13

)1(
12

)1(
11

00
0 nji

nji

aaaaa
aaaaaa

LLL

LLL

Interchange 

⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢

)()()(

)3(
3

)3(
3

)3(
3

)3(
33

000

00

iii

nji

aaa

aaaa
MOMOMOMMM

LLL g
these rows

⎥
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢

)()()(

)()()(

000

000

iii

inijii

aaa

aaa
MOMOMOMMM

LLL

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣
)()()(

)()()(

000

000

iii

jnjjji

aaa

aaa

LLL

MOMOMOMMM

LLL

⎦⎣ 000 nnnjni aaa LLL

Largest in magnitude



Column pivoting
144

⎤⎡ )1()1()1()1()1()1(

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

)3()3()3()3(

)2(
2

)2(
2

)2(
2

)2(
23

)2(
22

)1(
1

)1(
1

)1(
1

)1(
13

)1(
12

)1(
11

00
0 nji

nji

aaaaa
aaaaaa

LLL

LLL

⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢

)()()(

)3(
3

)3(
3

)3(
3

)3(
33

000

00

iii

nji

aaa

aaaa
MOMOMOMMM

LLL

⎥
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢

)()()(

)()()(

000

000

iii

inijii

aaa

aaa
MOMOMOMMM

LLL

Largest in 
magnitude

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣
)()()(

)()()(

000

000

iii

jnjjji

aaa

aaa

LLL

MOMOMOMMM

LLL

⎦⎣ 000 nnnjni aaa LLL

Interchange 
these columns



Complete pivoting
145

⎤⎡ )1()1()1()1()1()1(

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

)3()3()3()3(

)2(
2

)2(
2

)2(
2

)2(
23

)2(
22

)1(
1

)1(
1

)1(
1

)1(
13

)1(
12

)1(
11

00
0 nji

nji

aaaaa
aaaaaa

LLL

LLL

Interchange 

⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢

)()()(

)3(
3

)3(
3

)3(
3

)3(
33

000

00

iii

nji

aaa

aaaa
MOMOMOMMM

LLL g
these rows

⎥
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢

)()()(

)()()(

000

000

iii

inijii

aaa

aaa
MOMOMOMMM

LLL

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣
)()()(

)()()(

000

000

iii

jnjjji

aaa

aaa

LLL

MOMOMOMMM

LLL

Largest in 
magnitude

⎦⎣ 000 nnnjni aaa LLL g

Interchange 
these columns



Row Pivoting in LU Decomposition 
146

When two rows of A are When two rows of A are 
interchanged, those rows 
of b should also be 

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

3
2
1

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡
2
1

interchanged.

Use a pivot vector. Initial 
pivot vector is integers ⎥

⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢

= jp
M

3

⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢

= ip
M

3

pivot vector is integers 
from 1 to n. 

When two rows (i and j) 
⎥
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢

i

jp

M

M

⎥
⎥
⎥
⎥
⎥

⎢
⎢
⎢
⎢
⎢

j

ip
M

of A are interchanged, 
apply that to pivot vector. ⎥

⎥

⎦
⎢
⎢

⎣n
M

⎥
⎥
⎥

⎦
⎢
⎢
⎢

⎣n
M



Example
147

⎤⎡⎤⎡⎤⎡ 112230

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

−
−−=

3
2
1

3
5

12

241
124
230

pbA

⎦⎣⎦⎣⎦⎣

Column search: Maximum magnitude second row
Interchange 1st and 2nd rows

⎥
⎤

⎢
⎡

⎥
⎤

⎢
⎡ −− 2124

Interchange 1st and 2nd rows

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

=
⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣ −
=′

3
1

241
230 pA



Example continued...
148

⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡

=
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎡ −−

=′ 1
2

230
124

pA
⎥⎦⎢⎣⎥⎦⎢⎣ − 3241

Eliminate a21 and a31 by using a11 as pivotal element

A LU i   f  (i   i l  i )A=LU in compact form (in a single matrix)

⎥
⎤

⎢
⎡

⎥
⎤

⎢
⎡ −− 2124

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

=
⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣ −−
=′

3
1

75.15.325.0
230 pA

Multipliers (L matrix)



Example continued...
149

⎤⎡⎤⎡ 2124

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡ −−
=′

3
1
2

75153250
230
124

pA
⎥⎦⎢⎣⎥⎦⎢⎣ −− 375.15.325.0

Column search: Maximum magnitude at the third row
I t h  nd d rd

⎤⎡⎤⎡ −− 2124

Interchange 2nd and 3rd rows

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−=′

1
3
2

230
75.15.325.0

124
pA

⎦⎣⎦⎣



Example continued...
150

⎤⎡⎤⎡ 2124

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−−

−−
=′

1
3
2

230
75.15.325.0

124
pA

⎥⎦⎢⎣⎥⎦⎢⎣ 1230

Eliminate a32 by using a22 as pivotal element

⎥
⎤

⎢
⎡

⎥
⎤

⎢
⎡ −− 2124

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

=
⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

−−=′

1
3

5.35.3/30
75.15.325.0 pA

Multipliers (L matrix)



Example continued...
151

⎤⎡⎤⎡⎤⎡ 2124001

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−

−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=′

1
3
2

5300
75.15.30

124

153/30
0125.0
001

pA
⎥⎦⎢⎣⎥⎦⎢⎣⎥⎦⎢⎣ 15.30015.3/30

⎥
⎤

⎢
⎡−

′⎥
⎤

⎢
⎡

⎥
⎤

⎢
⎡ 5122

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

=′⇒
⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

−=
⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

=
12
3

3
5

1
3 bbp

A’x=b’    LUx=b’
Ux=y

b’Ly=b’



Example continued...
152

Ly=b’

⎥
⎥
⎤

⎢
⎢
⎡ −

⎥
⎥
⎤

⎢
⎢
⎡

751
51

y
y

⎥
⎥
⎤

⎢
⎢
⎡−

⎥
⎥
⎤

⎢
⎢
⎡

⎥
⎥
⎤

⎢
⎢
⎡

3
5

01250
001 1

y
y

Ly=b

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

=
⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣ 5.10
75.1

3

2

y
y

Forward
substitution⎥

⎥
⎥

⎦⎢
⎢
⎢

⎣

=
⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

−
12
3

15.3/30
0125.0

3

2

y
y

⎥
⎤

⎢
⎡

⎥
⎤

⎢
⎡ 11x

⎥
⎤

⎢
⎡ −

⎥
⎤

⎢
⎡
⎥
⎤

⎢
⎡ −− 5124 1x

Ux=y

⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

=
⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣ 3
2

3

2

x
xBackward

substitution⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

=
⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣⎥
⎥
⎥

⎦⎢
⎢
⎢

⎣

−
5.10

75.1
5.300
75.15.30

3

2

x
x



Gauss-Jordan elimination
153

The elements above the diagonal are made zero at the same 
time that zeros are created below the diagonal

⎤⎡ )1()1()1()1( baaa ⎤⎡ )1()1()1()1( baaa

⎥
⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎢
⎡

)1()1()1()1(

)1(
2

)1(
2

)1(
22

)1(
21

)(
1

)(
1

)(
12

)(
11

n

n

baaa
baaa

MMOMM

L

L

⎥
⎥
⎥
⎥
⎥
⎤

⎢
⎢
⎢
⎢
⎢
⎡

)2()2()2(

)2(
2

)2(
2

)2(
22

)(
1

)(
1

)(
12

)(
11

0 n

n

baa
baaa

MMOMM

L

L

⎥
⎥
⎦⎢

⎢
⎣

)1()1()1(
2

)1(
1 nnnnn baaa L ⎥

⎥
⎦⎢

⎢
⎣

)2()2()2(
20 nnnn baa L

⎤⎡ − )1(
1

)1(
11 00 nba L⎤⎡ )2(

1
)2()1(

11 0 baa L

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡
−

)()(

)1(
2

)2(
22

111

00

00
00

nn

n

b

ba
ba

MMOMM

L

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

)3()3(

)2(
2

)2()2(
22

111

00

0
0

nn

nn

b

baa
baa

MMOMM

L

⎥⎦⎢⎣
)()(00 n

n
n

nn baL⎥⎦⎢⎣
)3()3(00 nnn baL



Gauss-Jordan Elimination
154

Almost 50% more arithmetic operations than 5 p
Gaussian elimination

Gauss-Jordan (GJ) Elimination is prefered when the 
inverse of a matrix is required.

[ ]IA
Apply GJ elimination to convert A into an identity 
matrix. 

[ ]IA

[ ]1−AI[ ]AI



Eigen values and Eigenvectors



Suppose we have some vector A, in the equation Ax=b 
and we want to find the which vectors x are pointing 
the same direction after the transformation. These 
vectors are called Eigenvectors  vectors are called Eigenvectors. 

The vector b must be a scalar multiple of x. The scalar 
that multiplies x is called the Eigen valuethat multiplies x is called the Eigen value

The main equation for this section is

A   λAx = λx

Any vector x that satisfies this equation is an 
Eigenvector  the corresponding λ is the Eigen valueEigenvector, the corresponding λ is the Eigen value

Note: for this section we are only considering square 
matricesmatrices.



Example A

Let’s examine some vectors that we are already 
familiar with and determine the Eigenvectors 

d i land Eigenvalues.

id j i i i h jConsider a Projection matrix P in R3, that projects 
vectors on to a plane. What are the Eigenvectors 
and Eigenvalues?and Eigenvalues?



Answer to Example A

Some Eigenvectors are the vectors that are 
already in the plane that is being projected on. 
In that case the vector does not change so the 
Eigenvalue for these vectors is 1Eigenvalue for these vectors is 1

Other Eigenvectors are those orthogonal to the g g
plane that is being projected on. Those vectors 
become the zero vector (which is considered 
parallel to all vectors)  The Eigen value for these parallel to all vectors). The Eigen value for these 
vectors is zero.



Look at the case λ = 0

If A is a singular matrix, then we can solveg ,

Ax = λx

What did we previously call these values?



Answer 

If λ= 0 then we are solving Ax=0 which is the null g
space (Kernel)



The following statements are equivalent
A is in ertibleA is invertible
The linear system Ax=b has a unique solution x for all b

f(A)  Irref(A) = In

Rank(A) = n

I  (A)  RIm (A) = Rn

ker(A) = 0

The column vectors of A form a basis of Rn

The column vectors of A span Rn

The column vectors of A are linearly independent

detA ≠0

0 fails to be an eigenvalue of A



How can I solve Ax = λx
Bring everything on one sideBring everything on one side
Ax – λx = 0
(A- λI)x = 0( )
If this can be solved then the matrix
(A- λI) must be singular
Which means that det (A- λI) =0 
This equation is called the characteristic equation.
There should be n values to this equation (although some 

could be repeated)
Once we find λ find the nullspace of(A λI)x = 0Once we find λ find the nullspace of(A- λI)x = 0
to find the x’s (Eigenvectors)



Find the Eigenvalues

3    1 

1    3 



Find the Eigenvalues3    1 

1    3 1   1 

1    1 
Note: this equation is 

Find det (A- λI) =0                                 Plug in 

(3- λ)2 – 1                            λ=2 and find 

Note: this equation is 
called the characteristic 
equation

λ2 - 6 λ + 8 = 0                    a basis for 

(λ-4)(λ-2)= 0                 kernel

3- λ 1 

1    3- λ

λ=4 λ=2

Plug in λ=4  to find the Eigenvectorsg g

find a basis for the null space (kernel)-1   1 

1    -1 



Eigenvalues of triangular matrices

Find the Eigenvalues ofg

3    1 

0    3 0    3 



Triangular matrices slide 1 of solutions

Find the Eigenvalues 
3    1 

0    3 
A=

A- λ I= 3- λ 1 

0        3 - λ

Det(A)= (3 – λ)2 = 0     λ =3

This matrix has a repeated Eigenvalue. p g

Note: for triangular matrices, the values on the diagonal 
of the matrix are the Eigenvalues



Triangular matricesTriangular matrices

Find the Eigenvectors A- λ I=

Replace λ by 3

3- λ 1 

0        3 - λ

Find the null space
0     1 

0      0

This matrix has only 1 Eigenvector!

A repeated λ gives the possibility of a lack of 
Eigenvectors



Section D



Ordinary Differential Equationsy q

Equations which are composed of an unknownEquations which are composed of an unknown 
function and its derivatives are called differential 
equations.

Differential equations play a fundamental role in q p y
engineering because many physical phenomena are 
best formulated mathematically in terms of their rate 
of change.

vcgdv
−=

v- dependent variable

t independent variablem
g

dt t- independent variable



When a function involves one dependent variable, the equation 
is called an ordinary differential equation (or ODE). A partial y ff q ( ) p
differential equation (or PDE) involves two or more 
independent variables.

Differential equations are also classified as to their order.
A first order equation includes a first derivative as its highest 
d i iderivative.
A second order equation includes a second derivative.

Higher order equations can be reduced to a system of first 
order equations, by redefining a variable.



ODEs and Engineering PracticeODEs and Engineering Practice

Figure 7.1



Figure 7.2



Runga-Kutta Methods

This chapter is devoted to solving ordinaryThis chapter is devoted to solving ordinary 
differential equations of the form

)(fdy

Euler’s Method

),( yxf
dx
y
=

Euler s Method



Figure 7.3



The first derivative provides a direct estimate of the 
slope at xip i

),( ii yxf=φ

where f(xi,yi) is the differential equation evaluated at xi
and yi. This estimate can be substituted into the 

tiequation:
hyxfyy iiii ),(1 +=+

A new value of y is predicted using the slope to 
extrapolate linearly over the step size hextrapolate linearly over the step size h.



10

5.820122),( 23 +−+−==

i tSt ti

xxxyxf
dx
dy

25550*581)( =+=+= hyxfyy

1,0 00 == yxpointStarting

25.55.0*5.81),(1 =+=+=+ hyxfyy iiii

Not good



Error Analysis for Euler’s Method/Error Analysis for Euler s Method/
Numerical solutions of ODEs involves two types of 
error:error:

Truncation error
Local truncation error

!2
),( 2hyxfE ii

a
′

=

P t d t ti

)(
!2

2hOEa =
Propagated truncation error

The sum of the two is the total or global truncation error
Round-off errorsRound off errors



The Taylor series provides a means of quantifying the error in 
Euler’s method. However;

The Taylor series provides only an estimate of the local 
truncation error-that is, the error created during a single step 
of the method.
In actual problems, the functions are more complicated than 
simple polynomials. Consequently, the derivatives needed to 
evaluate the Taylor series expansion would not always beevaluate the Taylor series expansion would not always be 
easy to obtain.

In conclusion,
h b d d b d i h ithe error can be reduced by reducing the step size

If the solution to the differential equation is linear, the 
method will provide error free predictions as for a straight p p g
line the 2nd derivative would be zero.



Figure 7.4



Improvements of Euler’s methodp

A fundamental source of error in Euler’s method is that theA fundamental source of error in Euler s method is that the 

derivative at the beginning of the interval is assumed to apply 

th ti i t lacross the entire interval.

Two simple modifications are available to circumvent this 

shortcoming:

Heun’s Method

The Midpoint (or Improved Polygon) Method



Heun’s Method/Heun s Method/
One method to improve the estimate of the slope 
involves the determination of two derivatives for theinvolves the determination of two derivatives for the 
interval:

At the initial pointp
At the end point

The two derivatives are then averaged to obtain an 
improved estimate of the slope for the entire interval.

hyxfyy )(:Predictor 0 +=

hyxfyxfyy

hyxfyy

iiii
ii

iiii

2
),(),(:Corrector

),( :Predictor
0

11
1

1

++
+

+

+
+=

+=

ii 21+



Figure 7.5



The Midpoint (or Improved Polygon) Method/p ( p yg )
Uses Euler’s method t predict a value of y at the 
midpoint of the interval:

hyxfyy iiii ),( 2/12/11 +++ +=



Figure 7.6



Runge-Kutta Methods (RK)g ( )

Runge-Kutta methods achieve the accuracy of aRunge Kutta methods achieve the accuracy of a 
Taylor series approach without requiring the 
calculation of higher derivatives.

),,(

2211

1

kakaka
hhyxyy

nn

iiii+

+++=
+=

Lφ
φ

Increment function

)(
),(

constants'

1

hkqyhpxfk
yxfk

sa

ii

++=
=
=

p’s and q’s are 

),(
),(

22212133

11112

hkqhkqyhpxfk
hkqyhpxfk

ii

ii

+++=
++=

M

p s and q s are 
constants

),( 11,122,1111 hkqhkqhkqyhpxfk nnnnninin −−−−−− +++++= L



k’s are recurrence functions. Because each k is a functional 
l i hi k RK h d ffi i fevaluation, this recurrence makes RK methods efficient for 

computer calculations.
Various types of RK methods can be devised by employingVarious types of  RK methods can be devised by employing 
different number of terms in the increment function as 
specified by n.
Fi d RK h d i h 1 i i f E l ’ h dFirst order RK method with n=1 is in fact Euler’s method.
Once n is chosen, values of a’s, p’s, and q’s are evaluated by 
setting general equation equal to terms in a Taylor seriessetting general equation equal to terms in a Taylor series 
expansion.

hkakayy ii )( 22111 ++=+



Values of a1, a2, p1, and q11 are evaluated by setting 
the second order equation to Taylor series expansionthe second order equation to Taylor series expansion 
to the second order term. Three equations to evaluate 
four unknowns constants are derived.

hyxfhyxfyyHowever

hkakayyhaveWe

ii
iiii

ii

2
1

22111

!2
),('),(

)(:

++=

++=

+

+

hdyyxfyxf

dx
dy

y
yxf

x
yxfyxfBut iiii

ii

2)()(

),(),(),('

!2

⎤⎡ ∂∂

∂
∂

+
∂

∂
=

yxfk

h
dx
dy

y
yxf

x
yxfhyxfyyThen

ii

iiii
iiii

1

1

),(
!2

),(),(),(

=

⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
+

∂
∂

++=+

hkyxfhyxffk

hkqyhpxfkexpandnowWe
hkqyhpxfk

iiii

ii

ii

11112

11112

),(),()(

),(
),(

∂∂
++=

++=

hkq
y

yxfhp
x

yxfyxfk iiii
ii 11112

),(),(),(
∂

∂
+

∂
∂

+=



hkakayy ii )( 22111 ++=+

hhkq
y

yxfhp
x

yxfyxfayxfayy iiii
iiiiii

⎭
⎬
⎫

⎩
⎨
⎧

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂

∂
+

∂
∂

+++=+ 1111211
),(),(),(),(

yxf
x

yxfhpayxfhayxfhayy ii
iiiiii

∂
∂

∂
+++=+

)(

),(),(),(

2

2
12211

)()( 2hyxfyxf ⎤⎡ ∂∂

y
yxfhyxfqa ii

ii ∂
∂

+
),(),( 2

112

!2
),(),(),(),(1

hyxf
y

yxf
x

yxfhyxfyy ii
iiii

iiii ⎥
⎦

⎤
⎢
⎣

⎡
∂

∂
+

∂
∂

++=+

121 =+ aa

1
2
1

12

21

=pa

2112 =qa



Because we can choose an infinite number of values 
for a2, there are an infinite number of second-order RK 
methods.
E i ld i ld l h l ifEvery version would yield exactly the same results if 
the solution to ODE were quadratic, linear, or a 
constant.constant.
However, they yield different results if the solution is 
more complicated (typically the case).
Three of the most commonly used methods are:

Huen Method with a Single Corrector (a2=1/2)
The Midpoint Method (a2=1)
Raltson’s Method (a =2/3)Raltson s Method (a2=2/3)



Figure 7.7



191Partial Differential Equations

Figure 8.1



Fi i Diff Elli i E i192Finite Difference: Elliptic Equations
Solution TechniqueSolution Technique

Elliptic equations in engineering are typically used to 
characterize steady-state, boundary value problems.

For numerical solution of elliptic PDEs, the PDE is 
f d i l b i diff itransformed into an algebraic difference equation.

B f it i li it d l l t tBecause of its simplicity and general relevance to most 
areas of engineering, we will use a heated plate as an 
example for solving elliptic PDEs. p g p



Figure 8.2

193



The Laplacian Difference Equations/The Laplacian Difference Equations/

02

2

2

2

=
∂
∂

+
∂
∂

y
T

x
T

Laplace Equation

194

2
2

,1,,1
2

2

Δ

+−
=

∂
∂

∂∂

−+ jijiji

x
TTT

x
T

yx Laplace Equation

O[Δ(x)2]

2
2

1,,1,
2

2

Δ

+−
=

∂
∂ −+ jijiji

y
TTT

y
T

O[Δ(y)2]

0
22

2
1,,1,

2
,1,,1

ΔΔ

=
Δ

+−
+

Δ

+− −+−+ jijijijijiji

yx
y

TTT
x

TTT

04 ,1,1,,1,1 =−+++
Δ=Δ

−+−+ jijijijiji TTTTT
yx

Laplacian difference 
equation.q

Holds for all interior points



Figure 8.3

195



In addition boundary conditions along the edges must be
196

In addition, boundary conditions along the edges must be 
specified to obtain a unique solution.
The simplest case is where the temperature at the boundary is 
set at a fixed value, Dirichlet boundary condition.
A balance for node (1,1) is:

04TTTTT

0
75

04

01

1110120121

=
=−+++

T
T

TTTTT

04
0

211211

10

=++−
=

TTT
T

Similar equations can be developed for other interior points to 
result a set of simultaneous equations.



• The result is a set of nine simultaneous equations with nine 
197unknowns:

04
754

22132111

122111

=−−+−
=−−

TTTT
TTT

754
504

13221211

323121

22132111

=−−+−
=−+−

TTTT
TTT

504
04

33322231

2332221221

=−+−−
=−−+−−

TTTT
TTTTT

1504
1004
1754

33231322

231312

+
=−+−−
=−+−

TTT
TTTT

TTT

1504 332332 =+−− TTT


