Syllabus

NUMERICAL DIFFERENTIATION AND INTEGRATION:- Approximating the
derivative, Numerical differentiation formulas, Introduction to Numerical quadrature,

Newton-Cotes formula, Gaussion Quadrature.

SOLUTION OF NONLINEAR EQUATIONS:- Bracketing methods for locating a root,
Initial approximations and convergence criteria, Newton- Raphson and Secant methods,

Solution of problems through a structural programming language such as C or Pascal.

Section B

ERRORS IN NUMERICAL CALCULATIONS:-Introduction, Numbers and their accuracy,

Absolute, relative and percentage errors and their analysis, General error formula.

INTERPOLATION AND CURVE FITTING:- Taylor series and calculation of functions,
Introduction to interpolation, Lagrange approximation, Newton Polynomials, Chebyshev

Polynomials, Least squares line, curve fitting, Interpolation by spline functions.



» SOLUTION OF LINEAR SYSTEMS:-'Direct Methods, Gaussian elimination and
pivoting, Matrix inversion, UV factorization, Iterative methods for linear systems,
Solution of problems through a structured programming language such as C or Pascal.

» EIGEN VALUE PROBLEMS:- Jacobi, Given’s and Householder’s methods for symmetric

matrices, Rutishauser method for general matrices, Power and inverse power methods.

Section D
> SOLUTION OF DIFFERENTIAL EQUATIONS:- Introduction to differential

equations, Initial value problems, Euler’s methods, Heun’s method, Runge-Kutta
methods, Taylor series method, PredictorCorrector methods, Systems of differential
equations, Boundary valve problems, Finite-difference method, Solution of problems

through a structured programming language such as C or Pascal.

» PARTIAL DIFFERENTIAL EQUATIONS, EIGENVALUES AND EIGENVECTORS:- Solution of
hyperbolic, parabolic and elliptic equations, The eigen value problem, The power method and the Jacobi’s method

for eigen value problems, Solution of problems through a structural programming language such as C or Pascal.






Approximations and Round-Off Errors

» For many engineering problems, we cannot obtain analytical
solutions.

» Numerical methods yield approximate results, results that are
close to the exact analytical solution. We cannot exactly compute
the errors associated with numerical methods.

> Only rarely given data are exact, since they originate from
measurements. Therefore there 1s probably error in the input
information.

» Algorithm itself usually introduces errors as well, e.g.,
unavoidable round-offs, etc ...

» The output information will then contain error from both of
these sources.

» How confident we are 1n our approximate result?

» The question is *“how much error is present in our calculation
and is it tolerable?”




» Accuracy. How close 1s a computed or measured value
to the true value

> Precision (or reproducibility). How close is a computed
or measured value to previously computed or measured
values.

> Inaccuracy (or bias). A systematic deviation from the
actual value.

> Imprecision (or uncertainty). Magnitude of scatter.
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Significant Figures

» Number of significant figures indicates precision. Significant digits of a
number are those that can be used with confidence, e.g., the number of
certain digits plus one estimated digit.

53,800 How many significant figures?

5.38 x 10* 3

5.380 x 10* 4

5.3800 x 10* 5
Zeros are sometimes used to locate the decimal point not significant
figures.

0.00001753 =

0.0001753 =

0.001753 =




Error Definitions

E, = True value — Approximation (+/-)

True error

{rue error

True fractional relative error =
true value

True percent relative error, ¢, = true error x100%

> 7t
true value




» For numerical methods, the true value will be known
only when we deal with functions that can be solved
analytically (simple systems). In real world

applications, we usually not know the answer a priori.
Then

_ Approximat e error <100 %

&
a

Approximat ion

_ Current approximation - Previous approximation «100%

a

(+/-)
> Iterative approach, example Newton’s method

Current approximation



» Use absolute value.
» Computations are repeated until stopping criterion is

> satisfied.
E < E Pre-specified % tolerance based
d é\ on the knowledge of your

solution

» If the following criterion is met

g =(0.5x10%")%

you can be sure that the result is correct to at least n
significant figures.




* Numbers such as , €, or /7 cannot be expressed
by a fixed number of significant figures.

» Computers use a base-2 representation, they cannot
precisely represent certain exact base-10 numbers.

» Fractional quantities are typically represented in
computer using “floating point” form, e.g.,

Integer part \

m be</ exponent

mantissa / \ Base of the number system

used




Figure 1.2
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Figure 1.3
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Figure 1.4

Signed

| exponent |




156.78 > 0.15678x1031n a floating
point base-10 system

1 0.029411765
34 Suppose only 4

1 decimal places to be stored
0.0294x100 f ‘m‘ <1

» Normalized to remove the leading zeroes. Multiply
the mantissa by 10 and lower the exponent by 1

T e




1
—<im<l1
Therefore ‘ ‘
for a base-10 system 0.1 <m<1
for a base-2 system 0.5 <m<1

» Floating point representation allows both

fractions and very large numbers to be expressed
on the computer. However,

» Floating point numbers take up more room.
» Take longer to process than integer numbers.

» Round-off errors are introduce;d bepause mantissa
holds only a finite number of significant figures.







Taylor’s Series and Interpolation




We are able to prod some function, but do not know what
it really 1s.

This gives us a list of data points: [X;,fi]

f(x) o ?e

X; X|+l




Interpolation & Curve-fitting




Interpolation & Curve-fitting




Distinctly different approaches depending on the quality of
the data

Consider the pictures below:

/V
extrapolate o i

. / . (\] @ O () °
interpolate "o extrapolate °
Pretty confident: 1 Unsure what the relationship is
there is a polynomial relationship Clear scatter
Little/no scatter Want to find an expression
Want to find an expression that captures the trend:
that passes exactly through all the points minimize some measure of the error

Of all the points...



Interpolation




Interpolation




Curve Approximation




Polynomial Interpolation

 Consider our data set of n+1 points y;=f(X;) at n+1 points
XgiXq-Xiyee Xt X5 > Xi g

* In general, given n+1 points, there 1s a unique polynomial
g (x) of order n:

» That passes through all n+1 points




There are a variety of ways of expressing the same

polynomial
Lagrange interpolating polynomials
Newton’s divided difference interpolating polynomials

We will look at both forms



Polynomial Interpolation




Lagrange Polynomials

» Summation of terms, such that:

o Equal to f() at a data
point.

o Equal to zero at all
other data points.

o Each term is a ntb-
degree polynomial

Existence!!!




Linear Interpolation

» Summation of two lines:

Remember this when we
talk about piecewise-
linear splines




Lagrange Polynomials

» 2nd Qrder Case => quadratic polynomials




Lagrange Polynomials




. Since p,(X) is the unique polynomial p,(X) of order n, write it:

. f[xi,xj] is a first divided difference
e f[x,,x,,x,] is a second divided difference, etc.




Note, that the order of the data points does not
matter.

All that is required is that the data points are
distinct.

Hence, the divided difference f[x, X; ... X,] is
invariant under all permutations of the x;'s.



Linear Interpolation

» Simple linear interpolation results from having only
2 data points.

slope




Quadratic Interpolation

» Three data points:




Newton Interpolation

» Let’s look at the recursion formula:

o q_




Evaluating for x,




Example: In(x)

o Data points: {(1,0), (4,1.3863), (6,1.79176)}

o Linear Interpolation: 0 + {(1.3863-0)/(4-1)}(x-1) = 0.46

O Quadratic Interpolation: 0.4621(x-1)+((0.20273-0.462
= 0.4621(X-1) - 0.051874 (x-1)(x-4)

ftat § -

zh g :
L Note the divergence
- for values outside of
F the data range.

'I .
: nuadrmtcaa:i.rrmh:
i Linesr estinate

g L (KA St AL el



Quadratic interpolation catches some of
the curvature

Improves the result somewhat
Not always a good idea: see later...



A divided-difference table can easily be constructed
incrementally.

Consider the function In(x).

In(x)
0.000000
0.693147
1.098612
1.386294
1.609438
1.791759
1.945910

2.079442
In(x)

X 0 ~NO O WNPRFE X




X 0 ~NO O WNPRFE X

In(x)

In(x)
0.000000
0.693147
1.098612
1.386294
1.609438
1.791759
1.945910
2.079442

f[1,1+1]

0.693147
0.405465
0.287682
0.223144
0.182322
0.154151

0.133531
b10-b9)/(A10-A9

flid+1]=

f (Xi+1) — f (Xi)

(Xi+1 =X )




X 0 ~NO O WNPRFE X

In(x) f[1,1+1]
0.000000

0.693147  0.693147

1.008612  0.405465  -0.143841
1.386294  0.287682  -0.058892 . .
1.609438  0.223144  -0.032269 Fll+11+2]=
1.791759  0.182322  -0.020411
1.945910  0.154151  -0.014085

2.079442 0.133531 -0.010310
In(x) b10-b9)/(A10-AYc10-c9)/(a10-a8

fli+Li+2]-f[i,i+1]

(Xi+2 -X)




X 0O ~NO O~ WNPE X

Cf[i+Li+2,i+3] - f[i,i+1i+2]

(Xi+3 _Xi)

In(x) f1,1+1]

0.000000

0.693147  0.693147

1.098612  0.405465  -0.143841
1.386294  0.287682  -0.058892  0.028317
1.609438  0.223144  -0.032269  0.008874
1.791759  0.182322  -0.020411  0.003953
1.945910  0.154151  -0.014085  0.002109

2.079442 0.133531 -0.010310 0.001259
In(x) b10-b9)/(A10-A9c10-c9)/(al0-a8110-d9)/(al0-a7




X 0N O WNPRFE X

In(x)

In(x)
0.000000
0.693147
1.098612
1.386294
1.609438
1.791759
1.945910
2.079442

fli+L....i+4]-f[i,...,i+3]

f[i,...,1+4]=
f[1,1+1]

0.693147

0.405465 -0.143841
0.287682 -0.058892
0.223144 -0.032269
0.182322 -0.020411
0.154151 -0.014085
0.133531 -0.010310

b10-b9)/(A10-A9c10-c9)/(al0-a8110-d9)/(al0-a7d10-d9)/(al0-af

0.028317
0.008874
0.003953
0.002109
0.001259

(Xi+4 =X )

-0.004861
-0.001230
-0.000461
-0.000212




X 0N O WNPRFE X

fli+L....,i+5]-f[i,....i+4]

(Xi+5 — X )

f[i,...,1+5]=

In(x) 1,1+1]

0.000000

0.693147  0.693147

1.008612  0.405465  -0.143841

1.386294  0.287682  -0.058892  0.028317

1.609438  0.223144  -0.032269  0.008874  -0.004861

1.791759  0.182322  -0.020411  0.003953 -0.001230  0.000726
1.945010  0.154151  -0.014085 0.002109 -0.000461  0.000154

2.079442 0.133531 -0.010310 0.001259 -0.000212 0.000050
In(x) b10-b9)/(A10-A9c10-c9)/(al0-a8110-d9)/(al0-a7d10-d9)/(al0-a6el0-e9)/(al0-at




Calculating the
Divided-Differences

In(x) f1,1+1]

0.000000

0.693147  0.693147

1.098612  0.405465  -0.143841

1.386294  0.287682  -0.058892  0.028317

1.609438  0.223144  -0.032269  0.008874  -0.004861

1.791759  0.182322  -0.020411  0.003953 -0.001230  0.000726
1.945010  0.154151  -0.014085 0.002109 -0.000461  0.000154 -0.000095

2.079442 0.133531 -0.010310 0.001259 -0.000212 0.000050 -0.000017
In(x) b10-b9)/(A10-A9c10-c9)/(al0-a8110-d9)/(al0-a7d10-d9)/(al0-a6el0-e9)/(al0-atf10-f9)/(al0-a4

X 0 ~NO O~ WNPRE X




Calculating the
Divided-Differences

» Finally, we can calculate the last coefficient.

X In(x) f1,1+1] flI,1+1,...,1+7]

1 0.000000

2 0.693147 0.693147

3 1.098612 0.405465 -0.143841

4 1.386294 0.287682 -0.058892 0.028317

5 1.609438 0.223144 -0.032269 0.008874 -0.004861

6 1.791759 0.182322 -0.020411 0.003953 -0.001230 0.000726

7 1.945910 0.154151 -0.014085 0.002109 -0.000461 0.000154 -0.000095

8 2.079442 0.133531 -0.010310 0.001259 -0.000212 0.000050 -0.000017 0.000011
X In(x) b10-b9)/(A10-A9c10-c9)/(al0-a8110-d9)/(al0-a7d10-d9)/(al0-a6el0-e9)/(al0-atf10-f9)/(al0-a4 (gl0-g9)/(al0-a3)




Calculating the
Divided-Differences

* All of the coetficients
for the resulting
polynomial are in

bold. be b

In(x) /f[|,|+1] fL1+1,...,1+7] b

0.000000

0.603147  0.693147 7
1.098612 0.405465  -0.143841

1.386294 0.287682  -0.058892  0.028317

1.609438 0.223144  -0.032269  0.008874

1.791759 0.182322  -0.020411 0.003953 -000TZz30  0.000726

1.945910 0.154151  -0.014085  0.002109 -0.000461  0.000154 -0.000095

2.079442 0.133531 -0.010310 0.001259 -0.000212 0.000050| -0.000017 0.000011
In(x) b10-b9)/(A10-A9c10-c9)/(al0-a8110-d9)/(al0-a7d10-d9)/(a10-a6el0-e9)/(al0-atf10-f9)/(al0-a4 (gl0-g9)/(al0-a3)

X 0N O WNPREP X




The resulting polynomial comes from the divided-
differences and the corresponding product terms:

p,(x)=0

+0.693(x—1)
—~0.144(x—1)(x—2)
+0.28(x—1)(x-2)(x~-3)
—0.0049(x—1)(x-2)(x=3)(x~4)
+7.260107 (x—1)(x—2)(x—3)(x—4)
~9.50107° (x—1)(x—2)(x=3)(x—4)(x- )
+1.10107° (x=1)(x=2)(x=3)(x=4)(x=5)(x~ 6)( 7)

></-\
><

U1

—

3
3



Many polynomials




» Adding an additional data point, simply adds an
additional term to the existing polynomial.

Hence, only n additional divided-differences need to be
calculated for the n+1* data point.

X In(x) f1,1+1] fl,1+1,...,1+7]
1.0000000  0.0000000
2.0000000  0.6931472 0.6931472 b

3.0000000 1.0986123 0.4054651 -0.1438410

4.0000000 1.3862944 0.2876821 -0.0588915 0.0283165

5.0000000 1.6094379 0.2231436 -0.0322693 0.0088741 -0.0048606

6.0000000 1.7917595 0.1823216 -0.0204110 0.0039528 -0.0012303 0.0007261

7.0000000 1.9459101 0.1541507 -0.0140854 0.0021085 -0.0004611 0.0001539 -0.0000954

8.0000000  2.0794415 0.1335314 -0.0103096 0.0012586 -0.0002125 0.0000497 -0.0000174 0.0000111
1.5000000  0.4054651 0.2575348 -0.0225461 0.0027192 -0.0004173 0.0000819 -0.0000215 0.000008




* Quadratic interpolation:
does linear interpolation
Then add higher-order correction to catch the curvature

» Cubig, ...

» Consider the case where the data points are
organized such the the first two are the endpoints,
the next point is the mid-point, followed by
successive mid-points of the half-intervals.

Worksheet: f(X)=x2 from -1 to 3.



Uniqueness

» Suppose that two polynomials of degree n (or less)
existed that interpolated to the n+1 data points.

» Subtracting these two polynomials from each other
also leads to a polynomial of at most n degree.




Uniqueness

» Since p and q both interpolate the n+1 data points,
 This polynomial r, has at least n+1 roots!!!

» This can not be! A polynomial of degree-n can only
have at most n roots.

» Therefore, r(x) =0







o Define the error term as:

» If f(x) is an nt® order polynomial p, (X) is of course exact.
» Otherwise, since there is a perfect match at x,, X;,...,X,

» This function has at least n+1 roots at the interpolation
points.




Interpolation Errors

» Proof is in the book.

* Intuitively, the first n+1 terms of the Taylor Series is
also an n degree polynomial.




Interpolation Errors

» Use the point X, to expand the polynomial.

» Point is, we can take an arbitrary point X, and create
an (n+1)™ polynomial that goes thru the point x.




Interpolation Errors

» Combining the last two statements, we can also get a

» Corollary 1 in book — If f(x) is a polynomial of degree
m<n, then all (m+1)$ divided differences and higher
are zero.




Problems with Interpolation




Chebyshev nodes

» Equally distributed points may not be the optimal
solution.

» If you could select the x;’s, what would they be?
» Want to minimize the term.
» These are the Chebyshev nodes.

O For x=-1to 1: -




Chebyshev nodes

» Let’s look at these for n=4.

» Spreads the points out in
the center.

.




olynomial Interpolation in
Two-Dimensions




Finding the Inverse of a Function







What are root finding methods?
Methods for determining a solution of an equation.

Essentially finding a root of a function, that is, a zero
of the function.



Where are they used?

Some applications for root finding are: systems of
equilibrium, elliptical orbits, the van der Waals
equation, and natural frequencies of spring systems.

The problem of solving non-linear equations or sets
of non-linear equations is a common problem in
science, applied mathematics.



The problem of solving non-linear equations or
sets of non-linear equations is a common
problem in science, applied mathematics.

The goal is to solve f(x) = 0, for the function
f(x).

The values of x which make f(x) = 0 are the
roots of the equation.






There are many methods for solving non-linear
equations. The methods, which will be
highlighted have the following properties:

the function f(x) is expected to be continuous. If
not the method may fail.

the use of the algorithm requires that the
solution be bounded.

once the solution is bounded, it is refined to
specified tolerance.



Four such methods are:
Interval Halving (Bisection method)
Regula Falsi (False position)
Secant method
Fixed point iteration
Newton’s method



Bisection Method

o It is the simplest root-
finding algorithm.

* Requires previous
knowledge of two initial
guesses, a and b, so that
f(a) and f(b) have
opposite signs.

initial pt ‘b’

v initial pt ‘@’




Bisection Method

» Two estimates are
chosen so that the
solution is bracketed. ie
f(a) and f(b) have
opposite signs.

initial pt ‘b’

 In the diagram this i
f(a) < 0 and f(b) > o.

e The rootd lies
between a and b!

v initial pt ‘@’




Bisection Method

e The root d must
always be bracketed
(be between a and
b)!

e Tterative method.

initial pt ‘b’

v initial pt ‘@’




Bisection Method

e The interval between a
and b is halved by

calculating the average
of a and b.

e The new pointc = i
(a+b)/2. i
 This produces are two

possible intervals: a < x
<candc<x<b.

initial pt ‘b’

v initial pt ‘@’




Bisection Method

 This produces are two
possible intervals: a < x
<candc<x<b.

e Iff(c)>o0,thenx=d
must be to the left of c

initial pt ‘b’

-interval a < x < c. 1
e Iff(c) < 0,thenx=d | nitial pt
must be to the right of c

:interval c < x <b.




Bisection Method

o Iff(c) >o0,leta,, =a
and b, .., = ¢ and repeat
process.

e Iff(c)<o,leta,,=c
and b, ., = b and repeat
process. i

e This reassignment
ensures the root is
always bracketed!!

initial pt ‘b’

v initial pt ‘@’




Bisection Method

 This produces are two
possible intervals: a < x
<candc<x<b.

e Iff(c)>o0,thenx=d
must be to the left of c

initial pt ‘b’

-interval a < x < c. 1
e Iff(c) < 0,thenx=d | nitial pt
must be to the right of c

:interval c < x <b.




Bisection Method

O




Bisection Method

e Bisection is an iterative
process, where the initial
interval is halved until the
size of the interval
decreases until it is below
some predefined tolerance 5{
g: |a-b| > € or {(x) falls
below a tolerance 6: |f(c)

— f(c-1)| < 0.




Advantages

Is guaranteed to work if {(x) is continuous and the
root is bracketed.

The number of iterations to get the root to
specified tolerance is known in advance



Bisection Method

O




Secant Method

O




Overview of Secant Method

» Again to initial guesses
are chosen.

» However there is not
requirement that the
root is bracketed!

e The method proceeds
by drawing a line
through the points to
get a new point closer
to the root.

» This is repeated until
the root is found.




Secant Method

* First we find two
points(x,,x,), which
are hopefully near the
root (we may use the
bisection method).

A line is then drawn
through the two points
and we find where the
line intercepts the x-
axis, X,.




Secant Method

o If f(x) were truly
linear, the straight line
would intercept the x-
axis at the root.

e However since it is not
linear, the intercept is
not at the root but it
should be close to it.




Secant Method

* From similar triangles
we can write that,




* From similar triangles
we can write that,

(Xl _X2): (XO_XI)

f(X) f(xo)_ f(xl

» Solving for x, we ge)[:

Secant Method




Secant Method

e Iteratively this is
written as:

Xnp1 = Xy — f(xn)




Algorithm

» Given two guesses X,,, X, near the root,
o If |f(x,) <|f(x then

 Swap x,and x,.

* Repeat

o Set X=X - 1:()(1)>x< f(XXO):);I(X )

e Setx,=X,
e Setx, =X,
o Until|f(x, )< tolerance value.




Because the new point should be closer the root after
the 21d jteration we usually choose the last two

points.

After the first iteration there is only one new point.
However x, is chosen so that it is closer to root that

Xg-
This is not a “hard and fast rule”!



False Position

O




The method of false position is seen as an
improvement on the secant method.

The method of false position avoids the problems of
the secant method by ensuring that the root is
bracketed between the two starting points and
remains bracketing between successive pairs.



This technique is similar to the bisection method
except that the next iterate is taken as the line of
interception between the pair of x-values and the x-
axis rather than at the midpoint.



False Position

LIglp

(x5l (1405

ATLer| 1eration |2
After rteration 1

W thlg i, 2

Original interval (0)

Hlustration of the false-position method.,



Algorithm

* Glven two guesses X, X; that bracket the root,
* Repeat
o Setx, =x - f(x)—20 "N

F(x%)-7(x)
o If f(x.)is of opposite sign té(x) then

e  Setx, =X,
 Else Set x, = x,
e End If

» Until|f(x,)< tolerance value.




Discussion of False Position Method

O




The bisection method is useful up to a point.

In order to get a good accuracy a large number of
iterations must be carried out.

A second inadequacy occurs when there are multiple
roots to be found.



The bisection method is useful up to a point.

In order to get a good accuracy a large number of
iterations must be carried out.

A second inadequacy occurs when there are multiple
roots to be found.

Newton’s method is a much better algorithm.



Newton’s Method

O




Newton’s Method

e Algorithm requires an
initial guess, x,, which is
close to the root.

» The point where the
tangent line to the
function (f (x)) meets
the x-axis is the next
approximation, Xx,.

 This procedure is
repeated until the value
of X’ is sufficiently close
to zero.

—

fix)




Newton’s Method

» The equation for o
Newton’s Method
can be determined
graphically!




Newton’s Method

» The equation for )
Newton’s Method can
be determined
graphically!

e From the diagram tan
O = f'(Xo) — f(Xo)/(Xo —

X,)




Newton’s Method

» The equation for
Newton’s Method can
be determined
graphically!

e From the diagram tan
O = f'(Xo) — f(Xo)/(Xo T

X,)

fix)

e Thus, x,=Xx, -

F(Xo)/F'(Xo). l
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Newton’s Method

 The general form of s
Newton’s Method is:

Xpey = Xy — f(x)/f' (%)




Newton’s Method

e The general form of i
Newton’s Method is:

Xn+1 = Xp — f(Xn)/ f '(Xn)

e Algorithm
 Pick a starting value for x

e Repeat

. x:=x — f(x)/f'(x)
e Return x il

—




e Standing in the heart of calculus are the mathematical concepts
of differentiation and integration:
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Figure 4.3

X ¥ Y dy/dx
0 0 0 76.50
3 200 3 57.50
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Newton-Cotes Integration Formulas

N—

» The Newton-Cotes formulas are the most common
numerical integration schemes.

* They are based on the strategy of replacing a
complicated function or tabulated data with an
approximating function that is easy to integrate:

b

:j f (x)dx jf (X)dx

a

f (x)=a,+a,x+---+a_ x"" +ax"




//




Figure 4.6
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» The Trapezoidal rule is the first of the Newton-Cotes
closed integration formulas, corresponding to the case
where the polynomial 1s first order:

| = i f (X)dx ;i f, (x)dx

e The area under this first order polynomial 1s an
estimate of the integral of f(X) between the limits of a

and b:
f(@)+ f(b
| =(b-a) ( )2 ( )}Trapezoidal rule




Figure 4.7




Error of the Trapezoidal Ryle/

e When we employ the integral under a straight line
segment to approximate the integral under a curve,
error may be substantial:

1 " 3
E, :_E F'(S)b-a)

where & lies somewhere in the interval from a to b.




e One way to improve the accuracy of the trapezoidal rule 1s to
divide the integration interval from a to b into a number of
segments and apply the method to each segment.

e The areas of individual segments can then be added to yield the
integral for the entire interval.

_b-a

o

h a=X, b=x

n

| = ]l f(x)dx+]Z f(x)dx+---+ ] f (x)dx

Substituting the trapezoidal rule for each integral yields:
I —h f(x,)+ f(xl)+h f(x)+ f(X2)+~-+h f(x, )+ f(x)

o 2 2 2 ]
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More accurate estimate of an integral 1s obtained 1f a high-
order polynomial is used to connect the points. The
formulas that result from taking the integrals under such
polynomials are called Simpson’s rules.

Simpson’s 1/3 Rule/

Results when a second-order interpolating polynomaial 1s
used.



(a)

(b)




b

a

a=Xx,

b

I =_[ f (x)dx ;j f, (x)dx

b=Xx,

(X—Xl)(X—Xz) f(xo)+ (X_Xo)(x_xz) f(xl)+ (X—XO)(X—XI) f(

':IL

Xo — X1)(Xo B Xz)

(X1 B Xo)(x1 B Xz) (Xz B Xo)(xz B X1)

h _b-a
| ~ 3[f(x0)+4f(x1)+ f(x,)] h= >

X, )}dx







Circuit analysis (Mesh and node equations)

Numerical solution of differential equations (Finite
Difference Method)

Numerical solution of integral equations (Finite
Element Method, Method of Moments)

a11X1—|-8.12X2-|—~~+a1an:b1 A, Ay v Ay | X bl
b,

a21X1—|-8.22X2+-~+8.2an=b2 A Ay o Ay | X
) — i .. ) .| =

a. X +a,x, +---+a x =hb a, a, - a,|X ol




Consistency (Solvability)

» The linear system of equations Ax=Db has a solution,
or said to be consistent IFF

Rank{A}=Rank{A|b}
» A system is inconsistent when
Rank{A}<Rank{A|b}

Rank{A} is the maximum number of linearly independent columns
or rows of A. Rank can be found by using ERO (Elementary Row
Oparations) or ECO (Elementary column operations).

ERO=# of rows with at least one nonzero entry
ECO=# of columns with at least one nonzero entry




Solution Techniques




Direct solution Methods




First step of elimination

i ] | ! 1
Pivotal element ||a )"’ al’ al’ al) X
(1) (1) (1) (1)
a,, a a ,; a,, X,
(1) (1) (1) (1)
a ; a ;, a 33 as, X3
(1) (1) (1) (1)
an1 an2 a'n3 a'nn _Xn_
(1) (1) (1) (L) 1T
ap a a 3 a, Xy
_ (1) (1) 2 2 2
m,, a,’ /aj 0 aéz) a§3) aén) X,
_ (1) (1) 2 2 2
m,, a ’ /apj 0 a3(2) 33(3) a3(n) X3
_ (1) (1) 2 2 2
m.,, a, /ay 0 a\y a3y a g, | Xy




Second step of elimination

(1) (1) (1) (L ([ ] (1)
a a,, a; a, Xy bl
; (2) (2) (2) (2)
Pivotal element| O P a 53 a,, X, bz
(2) (2) (2) — (2)
0 'a32 a33 a3n X3 o b3
(2) (2) (2) (2)
| O |an_2 an3 ann _Xn_ _bn ]
(1) (1) (1) () [ ] (1)
a a,, Ay a, X, b1
(2) (2) (2) (2)
0 a a 3 a,, X, bz
_ (2) (2) 3 3 _ 3
m;, = aj /a,, 0 0 a3(3) a3(n) Xy | = b3( :
_ (2) (2) 3 3 3
m,, = 4a,, /azz i 0 0 ar(13) ar(m) R _brg )_




Gaussion elimination algorithm

_ A(p) (p)
mr,p o arp /app
(p) _
a, =0

(p+D) _ Rh(P) (p)
b(P =b® —m, _ xb!

For c=p+1ton

(p+1) _ A(p) (p)
arc — a'rc o mr,p X apc




Back substitution algorithm
a-l(ll) al(zl) a1(31) al(:]) B X1 ] bl(l)
0 aj’ ay’ ayy X, b,*
0 0 al)) all X; | | by¥
0 0 o a™ . am |lx,, VR
0 0 0 0 al™ || x, | | b
phM 1 1
X, = — Xy, = b —ar x |
(n) n—1 (n-1) n-1 n—1n"*n
ann a‘n—ln—l
x.:L. b.(‘)—zn:a.(”x i=n—-1.n-2.....1
i a(.) i : ik "k ” AR
ii k=i+1




Number of arithmetic operations required by the
algorithm to complete its task.

Generally only multiplications and divisions are
counted

Elimination process

Back substitution

2
n +n Dominates
Total 2 Not efficient for
3 different RHS vectors
LI



A=LU
Ax=b =LUx=b
Define Ux=y
Ly=Db Solve y by forward substitution
ERO’s must be performed on b as well as A
The information about the ERO’s are stored in L
Indeed y is obtained by applying ERO’s to b vector
Ux=y Solve x by backward substitution



LU Decomposition by Gaussian elimination

There are infinitely many different ways to decompose A.
Most popular one: U=Gaussian eliminated matrix
L=Multipliers used for elimination

L0 0 0 ofap al ay o af

m, 1 0 0 0] 0 a® a® ... g®
ac| Mo Mo 1 0000 0 Ay e ap
ol : . . . E

m,, M, M5 - 1 o0 0 0 aﬁrj)ln_l ar(lr—])ln
My My, My My, - 10 0 0 0 ap]

Compact storage: The diagonal entries of L. matrix are all 1’s,
they don’t need to be stored. LU is stored in a single matrix.




A=LU Decomposition n-n

3 3
Ly=b forward substitution n° —n
Ux=y backward substitution 2 n?an
Total n’ n 2
otal 2o

For c'.ifferentBRHS Vec%ors, the system can be
efficiently solved.



Computer uses finite-precision arithmetic

A small error is introduced in each arithmetic
operation, error propagates

When the pivotal element is very small, the
multipliers will be large.

Adding numbers of widely differening magnitude
can lead to loss of significance.

To reduce error, row interchanges are made to
maximise the magnitude of the pivotal element



Example: Without Pivoting

1.133 5281 | x| [6.414
FARLameRe o414 —1210 x, | |22.93
2414 1.133 5281 |[x | | 6.414
m, =——=21.31 =
1.133 10.000 —113.7 | x,| |-113.8
x| [0.9956 \ /
X, = _ 1.001 _ Loss of significance




Example: With Pivoting

24.14 —1210 x| [22.93
1133 5.281 | x,| |6.414

2414 —-1210] x | [22.93]
m,, = L1336 04693 =

24.14 0.000 5338 | x,| [5.338

X, | [1.000
X, | [1.000




Pivoting procedures




Most commonly used partial pivoting procedure

Search the pivotal column

Find the largest element in magnitude

Then switch this row with the pivotal row



Row pivoting

M A0 A0 (1) (1) (1)
a’ll a12 a13 a'1| alj aln

2) A2 (2) 2) 2)

O a22 a'23 a2i a‘2j a’2n
3) 3) 3) 3) | Interchange
0 0 Yo ald eeal e al
, , these rows

0 0 0 aj aj
0O 0 O aﬁ)
0 0 0 a; a)

Largest in magnitude




A () (1) (1) (1) (1) 1) |
all a‘12 a13 a‘li a - a

1) In
(2) (2) (2) (2) (2)
0 a22 323 . e a2i e azj . e azn
3) (3) (3) (3)
O O a33 [ J n
0 0 0 a
: : \Large§: 1(111
(i) magnituae
0 0 0 a\
) 0 0 0 agii) ar(]}) ar(]L)_
Interchange

these columns



0

[ A (D) (1) (1)
all a12 a13

) al?
0 ay
0 O
0 O
0 O
Interchange

these columns

Interchange
these rows

—Jargest in
magnitude




Row Pivoting in LU Decomposition

e When two rows of A are o - -

1
interchanged, those rows 1 )
of b should also be 2
interchanged. 3 3

» Use a pivot vector. Initial
pivot vector is integers
from 1 to n.

* When two rows (i and j)
of A are interchanged, :
apply that to pivot vector. N n




0] 3
A=|—-4 -2
[ 1] 4

Column search: Maximum magnitude second row
Interchange 15t and 274 rows

A =

4
0
1

-2
3
4

1
2




Example continued...

4 -2 1 Pl
A=l0 3 2| p=|1
1 4 -2 3

Eliminate a,, and a,, by using a,, as pivotal element
A=LU in compact form (in a single matrix)

-4 =2 1 2

A= 0| 3 2 | p=|1
-025 3.5 -1.75 3

Multipliers (L matrix)




Example continued...

[ -4 -2 1 2|
A=l o [3] 2 p=|1
-025 (3.5 -1.75| |3
Column search: Maximum magnitude at the third row

Interchange 2" and 34 rows

T 4 -2 1 ¥l
A=-025 35 -1.75| p=|3
0 3 2 1




A =

Example continued...

A =

—4 -2
~025 3.5
0 3

-
~1.75
2 —

—4 -2
~0.25| 3.5
0 3/35

1
-1.75

3.5

Multipliers (L matrix)

Eliminate a,, by using a,, as pivotal element




Example continued...

1 0o O0]-4 -2 1 i
A=-025 1 0|0 35 -175| p=|3
0 3/35 1]0 0 35 1

¥ 12 —5

p=|3| b=|-5|=b'=| 3

1 3 12




1

0

—4
0
0

—0.25

-2
3.5
0

Example continued...

Ly=b’

0 0]y,

1 0]y,
3/35 1]y,

Ux=y
1| x
=175 X,

3.5 | %

Forward
substitution

>

Backward
substitution




The elements above the diagonal are made zero at the same
time that zeros are created below the diagonal

(1) (1) 1) R )] [ 4 (D) (1) SO ED
ap a, a, : bl ap, a, a, : bl
(1) (1) (1) | (1) (2) (2) | (2)
a,, a,, a,, : bz 0 a,, ay, : bz
; ey T
|
(1) (1) (1) (1) (2) (2) (2)
a; a,, Ao :bn | | 0 an, A, :bn i
a® 0 .a® i b > ‘ a® 0 0 i p ("D
0 ay al? | ¥ ‘ 0 al’ 0 b{""Y
: i : i :
| |
0 0 a, b | 0 0 ay’ | b




Almost 50% more arithmetic operations than
Gaussian elimination

Gauss-Jordan (GJ) Elimination is prefered when the
inverse of a matrix is required.

Al
Apply GJ elimination to convert A into an identity
matrix.






Suppose we have some vector A, in the equation Ax=b
and we want to find the which vectors x are pointing
the same direction after the transformation. These
vectors are called Eigenvectors.

The vector b must be a scalar multiple of x. The scalar
that multiplies x is called the Eigen value

The main equation for this section is
Ax = Ax

Any vector x that satisfies this equation is an
Eigenvector, the corresponding A is the Eigen value

Note: for this section we are only considering square
matrices.



Let’s examine some vectors that we are already
familiar with and determine the Eigenvectors
and Eigenvalues.

Consider a Projection matrix P in R3, that projects
vectors on to a plane. What are the Eigenvectors
and Eigenvalues?



Some Eigenvectors are the vectors that are
already in the plane that is being projected on.
In that case the vector does not change so the
Eigenvalue for these vectors is 1

Other Eigenvectors are those orthogonal to the
plane that is being projected on. Those vectors
become the zero vector (which is considered
parallel to all vectors). The Eigen value for these

vectors 1s zero.



ook atthecase A= 0

O







A is invertible
The linear system Ax=Db hasa unique solution x for all b

rref(A) =1
Rank(A) =n
Im (A) =Rn

ker(A) =0
The column vectors of A form a basis of R»
The column vectors of A span R®

The column vectors of A are linearly independent
detA +0
o fails to be an eigenvalue of A



Bring everything on one side

AX-AX=0

(A-A\Dx =0

If this can be solved then the matrix

(A- AI) must be singular

Which means that det (A- AI) =0

This equation is called the characteristic equation.

There should be n values to this equation (although some
could be repeated)

Once we find A find the nullspace of(A- AI)x = 0
to find the x’s (Eigenvectors)



Find the Eigenvalues

O




1 3 11
1 1
Note: this equation is

Find det (A- AI) =0 called the characteriflyig in

equation

(3-A)2 -1 A=2 and find
3741 AN-6A+8=0 a basis for
1 3-A (A-4)(A-2)=0 kernel
A=4 A\=2

Plug in A=4 to find the Eigenvectors
I:-l 1 :| find a basis for the null space (kernel)



Eigenvalues of triangular matrices

O




Find the Eigenvalues

A- A= >N
0 3-A

Det(A)=(3—-A)?>=0 A=3
This matrix has a repeated Eigenvalue.

Note: for triangular matrices, the values on the diagonal
of the matrix are the Eigenvalues



Find the Eigenvectors A- A I=

3-A 1
Replace A by 3 0 3-A :l
Find the null space |:O o :|

This matrix has only 1 Eigenvector!

A repeated A gives the possibility of a lack of
Eigenvectors






N—

* Equations which are composed of an unknown
function and its derivatives are called differential
equations.

 Differential equations play a fundamental role in
engineering because many physical phenomena are
best formulated mathematically in terms of their rate
of change.

v- dependent variable

t- independent variable




* When a function involves one dependent variable, the equation
is called an ordinary differential equation (or ODE). A partial
differential equation (or PDE) involves two or more
independent variables.

» Differential equations are also classified as to their order.

A first order equation includes a first derivative as its highest
derivative.

A second order equation includes a second derivative.

» Higher order equations can be reduced to a system of first
order equations, by redefining a variable.



Figure 7.1




Figure 7.2
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e This chapter 1s devoted to solving ordinary
differential equations of the form
dy
— =1 (Xa y)
dx
Euler’s Method




Predicted
} error

True

'|.'|--.|.H
+
=

Figure 7.3
|




The first derivative provides a direct estimate of the
slope at X;
)= f (Xi ) y|)

where f(x;,y;) is the differential equation evaluated at x;
and y;. This estimate can be substituted into the

equation:
yi+1 — yi T f(XU y|)h

A new value of' y 1s predicted using the slope to
extrapolate linearly over the step size h.



‘;_y: f(X,y)=—2X> +12x* 20X +8.5
X

Starting point x,=0, Yy, =

True solution




Error Analysis for Euler’s Method/

e Numerical solutions of s involves two types of
eIror:

o Truncation error
= Local truncation error

Ea _ f (Xi9 yl) h2
2!
E, =0(h?)
= Propagated truncation error

o The sum of the two is the total or global truncation error
o Round-off errors







h =05

True solution

o | | | |
0 2 a4 x
(a)
¥ |

|
4 x

Estimated

-0.5

(b)

Figure 7.4
|



* A fundamental source of error in Euler’s method is that the

derivative at the beginning of the interval is assumed to apply

across the entire interval.

» Two simple modifications are available to circumvent this

shortcoming;:
O Heun’s Method

o The Midpoint (or Improved Polygon) Method




Heun’s Method/

* One method to improve the“estimate of the slope
involves the determination of two derivatives for the
interval:

At the 1nitial point
At the end point

* The two derivatives are then averaged to obtain an
improved estimate of the slope for the entire interval.

Predictor: Y., =Y.+ f(x,y.)h

fOx,Yy)+ (X, Yio+1) h
2

Corrector: VY, , =YV, +



Slope =f(x; .. ¥ . 1) .

e & WL

Slope =
fx;s vy)

(a)

Y4 SO y) + x5, 4. Y04 1)

Slope =

(b)

Figure 7.5
|



The Midpoint (or Improved Polygon) Method/

e Uses Euler’s method t predict a value of y at the
midpoint of the interval:

Yier = Yi + T (X125 Yis)h




Sl
o
pe
=f{x
i+ 120 Y
i+ 1!2)

yl.




e Runge-Kutta methods achieve the accuracy of a
Taylor series approach without requiring the
calculation of higher derivatives.

Yia =Y, +¢(Xi9 yiah)h
¢ = a1k1 4+ ;,12|(2 4ot ankn Increment function

a's = constants

k1 = f (Xi9 Yi)

kz = f(xi + plhn Yi + qllklh) p'sandq’s are
cagnstants

k3 = f(Xi + p3h, Yi +Q21k1h+Q22 2]?]5

kn = f (Xi + pn—1h9 Yi + qn—lklh + qn—1,2k2h +eeet qn—l,n—lkn—lh)




k’s are recurrence functions. Because each K 1s a functional
evaluation, this recurrence makes RK methods efficient for
computer calculations.

Various types of RK methods can be devised by employing
different number of terms in the increment function as
specified by n.

First order RK method with n=1 1s in fact Euler’s method.

Once n 1s chosen, values of a’s, p’s, and (’s are evaluated by
setting general equation equal to terms 1n a Taylor series
expansion.

Yist =Y, +(a1k1 T azkz)h



Values of a,, a,, p,, and q,, are evaluated by setting
the second order equation to Taylor series expansion
to the second order term.\Ihree equations to evaluate

four unknowns constants are derived.
We have:y., =V, +(ak, +ak,)h

However yi+1 = yi + f(xia yi)h+ f ();'9 y|) hz
But £, y)=2 W), O06,v) dy
OX oy dx
2
Then y., =y, + (X, y)h+ (X, %) +5f (%.¥:) dy | h
OX oy dx|2!

Ky = T(X;,¥)
K, = T(x + p,h, y; +q,,kh)
We now expand k, = f(x. + p,h, y; +q,,kh)

of (X, Y, of (X, Y,
k2:f(xi9yi)+ (ny)plh—i_ (8yy)q11k1h



Yia =Yi +(a1k1 + azkz)h

of Xi, V. of (X,Y) . ol
ym=yi+{a1f(xi,yi>+a2[f<xi,yi>+ X phs (a'yy)anlh]}h

of (X, Y,
yi+1:yi+\a\1hf(xi’yi)+a2hf(xi9y))+a2 p,h’ (XY)

Y

2 OF (X, Y;)
oy

of (%, ) _ of (X, ¥) h?
i2Ji > Ji/ f X, V.) |—
w (%> ¥i) B

+a,q,, f (X, y)h

Yian=Yit f(Xiayi)h+|:

a +a, =1




Because we can choose an infinite number of values
for a,, there are an infinite number of second-order RK
methods.

Every version would yield exactly the same results 1f
the solution to ODE were quadratic, linear, or a
constant.

However, they yield different results if the solution 1s
more complicated (typically the case).

Three of the most commonly used methods are:




Figure 7.7

__________________________ Analytical
Y4 @@ Euler

B Heun
®—® Midpoint
A=A Ralston




Flowline o)

Equipotential
line

Cool
Impermeable rock

(a) (b) (c)

| Figure 8.1 |



Solution Technique

Elliptic equations 1n engineering are typically used to
characterize steady-state, boundary value problems.

For numerical solution of elliptic PDEs, the PDE 1s
transformed 1nto an algebraic difference equation.

Because of 1ts simplicity and general relevance to most
areas of engineering, we will use a heated plate as an
example for solving elliptic PDEs.



Figure 8.2
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The Laplacian Difference Equations/
-------- 5 ; e g oo
T 9T _,
x> oy’ Laplace Equation
0°T _ T =275 +Tiy O[A(x)?]
OX” AX’
o Ty =20+
= OLA(y)]
oy Ay
T =21+ T Ta =21+ T
AR .- 1L g
AX Ay
AX = Ay
T+t Tii+ T T, —4T,, =0 [~ Laplacian difference
equation.

Holds for all interior ﬁoints



Figure 8.3

75°C

100°C
(1, 3) (2, 3) (3, 3)
® » .
(12} (2, 2) (3, 2)
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(1, 1) (2, 1) (3, 1)
® ° °
0°C

50°C




e In addition, boundary conditions along the edges must be
------------- speciﬁed-tr)"ﬁbtain-a-unique-@

e The simplest case 1s where the temperature at the boundary is
set at a fixed value, Dirichlet boundary condition.

e A balance for node (1,1) 1s:
T, +Ty,,+T,+T,-4T,=0
T, =75
T,=0
—4T7, +T,+T1,,=0

e Similar equations can be developed for other interior points to
result a set of simultaneous equations.




e The result 1s a set of nine simultaneous equations with nine
________ unknowns: /N
4T1 1 T21 T12 =75
T1 ;T 4T21 T13 T22 =0
—T21 -|—4-|'31 —T32 =50
_Tl 1 +4T12 _Tzz _T13 =75
_T21 _T12 + 4T22 T32 _T23 =0
_T31 _Tzz + 4T32 _T33 =50
—T1 5 + 4T13 T23 =175
—T22 —T13 + 4-|_23 —T33 =100
—T32 —T23 + 4-|_33 =150




