Vector and Tensor

Introduction
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Now an ordinary vector A can multiply in three ways:

1. Multiply a scalar a : Aa;
2. Multiply another vector B, via the dot product: A - B;

3. Multiply another vector via the cross product: A x B.

Correspondingly, there are three ways the operator V can act:

1. On a scalar function T : VT (the gradient);
2. On a vector function v, via the dot product: V - v (the divergence),

3. On a vector function v, via the cross product: V x v (the curl).
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Geometrical Interpretation:  The name divergence is well chosen. for V -v is a measure
of how much the vector v spreads out (diverges) from the point in question. For example,
the vector function in Fig. 1.18a has a large (positive) divergence (if the arrows pointed in,
it would be a large negative divergence), the function in Fig. 1.18b has zero divergence, and
the function in Fig. 1.18c again has a positive divergence. (Please understand that v here is
a function—there’s a different vector associated with every point in space. In the diagrams,
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Geometrical Interpretation; The name curl is also well chosen, for V x v is a measure
of how much the vector v “curls around” the point in question. Thus the three functions in
Fig. 1.18 all have zero curl (as you can easily check for vourself), whereas the functions
in Fig. 1.19 have a substantial curl, pointing in the z-direction, as the natural right-hand
rule would suggest. Imagine (again) you are standing at the edge of a pond. Float a small
paddlewheel (a cork with toothpicks pointing out radially would do); if it starts to rotate,
then you placed it at a point of nonzero curl. A whirlpool would be a region of large curl.



(1) Divergence of gradient: V - (VT).
(2) Curl of gradient: V x (VT).

The divergence V - v 18 a scalar—all we can do is take its gradient:
(3) Gradient of divergence: V(V - v).
The curl V x v is a vector, so we can take its divergence and curl:

(4) Divergence of curl: V- (V x v).
(5) Curl of curl: V % (V x v),
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Navier-Stokes Equation

Navier-Stokes equations for incompressible flow involve four
basic quantities

— Local (unsteady) acceleration

— Convective acceleration
— Pressure gradients

— Viscous forces




| Classical Mechanics

Quantum Mechanics

(Newton) (Bohr, Heisenbery,
Schrédinger, et al.)
Special Relativity | Quantum Field Theory
(Einstein) (Dirac, Pauli, Feynman,

Schwinger, et al.)




Limits

Newtonian Mechanics

— Very good for everyday life

— Fails at high speeds ~ speed of light

So it must be replaced by Special theory of Relativity
— Introduced by Einstein in 1905

— Applicable for smaller objects with higher speeds

It is superseded by Quantum mechanics because of
certain limitations

Relativistic Quantum mechanics is known as
— Quantum field theory



History

Archimedes (285-212 B.C.) formulated the principles of
buoyancy of submerged bodies and determined the gold
content of the crown of King Hiero |

At about the same time, the Roman engineers built an
extensive network of fresh-water supply

The development of fluid mechanics continued along two
different paths:
— mathematicians and physicists developed the theory and

applied it to “idealized” problems that did not have much
practical value

— engineers developed empirical equations that could be used in
the design of fluid systems in a limited range.

The lack of communication between these two groups
hindered the development of fluid mechanics for a long
time.



Modern Times

Leonardo da Vinci (1459-1519) conducted several experiments and derived the conservation
of mass equation for one-dimensional steady flow

The development of the laws of motion by Isaac Newton (1649-1727) and the linear law of
viscosity for the so-called Newtonian fluids set the stage for advances in fluid mechanics.

Leonhard Euler (1707-1783) obtained the differential equations for fluid motion in 1755.

Daniel Bernoulli (1700-1782) developed the energy equation for incompressible flow in
1738.

Lord Rayleigh (1849-1919) developed the powerful dimensional analysis technique.

Osborn Reynolds (1849-1912) conducted extensive experiments with pipe flow and in 1883
came up with the dimensionless number that bears his name.

The general equations of fluid motion that include the effects of fluid friction, known as the
Navier—Stokes equations, were developed by Claude Louis Marie Navier (1785-1836) in
1827 and independently by George Gabriel Stokes (1819-1903) in 1845.

Ludwig Prandtl (1875-1953) showed that fluid flows can be divided into a layer near the
walls, called the boundary layer, where the friction effects are significant and an outer layer
where such effects are negligible, thus the Euler and Bernoulli equations are applicable.

Theodore von Karman (1889-1963) and Sir Geoffrey I. Taylor (1886—1975) also contributed
greatly to the development of fluid mechanics in the twentieth century.

The availability of high-speed computers in the last decades and the development of
numerical methods have made it possible to solve a variety of real-world fluids problems and
to conduct design and optimization studies through numerical simulation.



